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Piew Datta
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frequently operationalized as lifetime value (LTV). LTV is
typically conceived as a numerical value representing a
customer’s expected total contribution to company profits
and is based on several measures:

1. the customer’s expected lifetime, or tenure, with
the company;

2. the per period (e.g., monthly) charges paid by the
customer; and

3. the per period cost of the company’s providing
service to a customer.

These measures are mathematically combined, and often
suitably discounted, for each individual customer to typi-
cally produce a single number, or LTV score, to be stored
Operationalizing a relationship management program re-
quires a retention strategy that is sensitive to an individual
customer’s position in the service life cycle, while being fi-
nancially sound for the provider. To this end, estimating a
customer’s hazard function and remaining tenure with the
company can lead to important insights into marketing
tactics and constitute fundamental building blocks for
methods of targeting important customers. The authors
describe a way of estimating these quantities using a com-
bination of statistical and data-mining techniques. The re-
sulting customer hazard information leads to a
generalization of lifetime value (GLTV) that explicitly ac-
counts for company actions and their success in relation-
ship management.
One of the central tenets of relationship management is
the development of marketing and retention strategies that
are customized to customers’ positions in their service us-
age life cycle (Aaker, Kumar, and Day 1998). In particular,
it is an important operational tactic to target customers for
special treatment based on their anticipated future value to
the company. A basic concept for the implementation of
these strategies is the estimation of some form of the value
of a customer during that usage lifetime, and this has been

in the customer database. Scoring such as this has become
very popular within services whose rates and service lev-
els can be easily varied and is a central goal of the increas-
ingly important company function of database marketing.
This article offers a new way of evaluating customers,
based on their dynamic relationship with the company. It
describes a methodology for the estimation of the associ-
ated scores and shows how this can be used in company
operations.

The basic building block of this methodology is a cus-
tomer’s hazard function, which is simply that customer’s
churn (exit) probability as a function of his or her age, that
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is, time with the service provider. Through this methodol-
ogy—featuring a combination of statistical and data-min-
ing techniques—estimation of an individual’s hazard
function, the main building block of this analysis, yields a
variety of useful ways of guiding customer retention and
targeting operations. In particular, we use the results of the
lifetime analysis to suggest a method of differentiating
company retention efforts based on our extension of LTV
and of segmenting customers on the basis of their hazard
functions.

Thus, this article proposes how the company manager
can

1. develop a measure of the Gain in Lifetime Value
(GLTV), an extension of traditional LTV that
informs the company’s attempts to target cus-
tomers for retention;

2. more clearly understand customer relationships
with the company and how they relate to com-
monly measured variables; and

3. segment the customer population in an opera-
tionally useful way.

THE VALUATION OF CUSTOMERS

In developing a relationship with a customer for a re-
peatedly purchased service, how should that customer be
evaluated by the company? Important customers should be
treated in special ways that enhance their profit production
and increase the probability of their being retained. Cus-
tomers with low value might be offered a service that is
less costly to provide.

Simple revenue (or profit) has often been selected as a
measure of customer value. “Big” customers are taken to
be those who purchase a great deal of products or services,
and these customers are often handled in special ways.
This measure is indicative of the first level of understand-
ing in valuation.

In an increasingly competitive world, however, it has
been recognized that such “big” customers may be tar-
geted by competitors or be fickle buyers in themselves so
that their tenure, or period of custom, with a particular pro-
vider may be brief. A customer whose revenues per period
are lower, but whose loyalty is greater, may be a better cus-
tomer during a longer time horizon. This is the basic argu-
ment for incorporating the customer’s estimated
remaining lifetime in any valuation. Although we argue
below that it too is only a partial measure, “lifetime value”
(often abbreviated LTV or CLV, although we use the for-
mer here) has been considered to be the second level of un-
derstanding in valuation.

The notion of LTV has been developed to incorporate a
customer’s likely tenure with a particular service provider

into the “simple revenue” method of valuation. Customer
LTV has long been used in the mail-order industry to jus-
tify such marketing actions as the mailing of a specific se-
quence of catalogs (Schell 1990). The concept has also
been applied in the industries of newspaper publishing
(Keane and Wang 1995), retailing (Hughes 1996), insur-
ance (Andon, Baxter, and Bradley 1998), and credit cards
(McDonald 1998). More recently, LTV has been sug-
gested as a basis for the design of marketing strategies; dif-
ferent segments of LTV scores would qualify customers
for such special treatment as favorable pricing, customer
service, equipment upgrades, or other concessions. Such a
single-dimension measure may well be optimal for
mail-order and other repeat buying behavior, but subscrip-
tion services where customers have a well-defined birth
and death time may require information of a different sort.

One major problem with traditional LTV is that it often
presumes a fixed tenure distribution with a particular com-
pany; that is, the customer’s tenure is implicitly assumed
to be unsusceptible to increase by a company’s actions.
Consequently, a strict reliance on LTV might downgrade
high-revenue customers whose estimated remaining ten-
ure is low and upgrade loyal but low-revenue customers.
Most relationship-oriented companies would not intu-
itively operate in this way.

Other authors have recognized that this classic notion
of LTV thus gives little guidance to the company’s reten-
tion managers. Strauss and Friege (1999) point out that
“the LTV of the terminated relationship is not important.
Only the value of the regained customer in the future is of
interest” (p. 351). They go on to outline a method for eval-
uating the actions of customer retention or regaining given
this anticipated LTV. Our work complements this analysis
by offering an explicit methodology for calculating this
fundamental building block. Bolton (1998) and Bolton
and Lemon (1999) also consider how customers’ lifetimes
can change as a result of company interventions and thus
affix a value for a general activity (e.g., increased training
of the newly activated customer). We show below how to
explicitly perform a similar lifetime increase calculation
with individual customers for tactical retention activities.

We will show below that through the tenure concepts of
LTV, an extension can be developed that incorporates
company retention actions in a simple way and leads to a
more reasonable targeting and relationship with intuitively
important customers. We call this the customer’s GLTV.
Like classical LTV, this builds on the methodologies of
survival analysis and, in particular, the estimation of the
hazard functions of individual customers.

The following section is a brief overview of the basic
ideas of survival analysis and the classical estimation of
hazard functions. Further details are available in several
standard texts (e.g., Cox and Oakes 1984).
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SURVIVAL ANALYSIS BACKGROUND

A key concept that underlies our methodological ap-
proach is the classical statistical notion of a hazard func-
tion for an individual customer. This is a vector that
displays the probability of that customer’s churning—or
“death” (of the relationship) in the language of survival
analysis—at any given tenure (or “age”), conditioned on
the customer’s having already survived to that age. Mathe-
matically, the hazard function for customer i is

θi(t) = P(death at age t | survival to age t). (1)

It is a slight simplification to assume that deaths only
occur at integer times t = 0, 1, 2, . . ., and the interval [t,t +1)
in which death actually occurred is indexed by t. The esti-
mate of the hazard function for customer i is denoted by
�θ i (t).

An illustrative estimated hazard function is shown in
Figure 1.

There are three classic statistical approaches for the
analysis of survival data, largely distinguished by the as-
sumptions they make about the parameters of the distribu-
tion(s) generating the observed survival times. All deal
with censored observations by estimating hazard functions
{θi(t)} where

θi(t) = probability of subject i’s death at
time t given subject i’s lifetime is t or greater

(2)

or the survival function {Si(t)} where

Si(t) = probability that subject i’s
lifetime is no less than t.

(3)

Parametric survival models (e.g., Lawless 1982) esti-
mate the effects of covariates (subject variables whose val-
ues influence lifetimes) by presuming a lifetime
distribution of a known form, such as an exponential or
Weibull. Although popular for some applications (espe-
cially accelerated failure models), the smoothness of these
postulated distributions makes them inappropriate for our
data which, as indicated in Figure 1, have built-in hazard
“spikes” at times of contract expirations. Kaplan-Meier
methods (Kaplan and Meier 1958) are nonparametric, pro-
viding hazard and survival functions with no assumption
of a parametric lifetime distribution function. However,
this popular estimator presumes a common hazard func-
tion for all members of a population (or prespecified popu-
lation subsets). Finally, proportional hazards regression
(Cox 1972) explicitly incorporates the effects of individual

customer covariates, but at the expense of presuming a
common hazard function of which each individual hazard
function is a multiple. In our development below, the
reader will see that each of these three models is overly re-
strictive for our data and that an artificial neural net (ANN)
estimation technique yields more plausible hazard func-
tion estimates for each individual customer.

We reemphasize the centrality of correct estimation of
an individual customer’s hazard function. Once estimated,
more immediately useful measures are readily available.
An estimate of the median remaining lifetime of customer
i at time t0 is

t t
S t

S t
i

i i

i

*
*� ( )

� ( )
.− =0

0

0 5where , (4)

in which the estimated survival function � ( )S ti ′ can be con-

structed from the estimated hazard function:

� ( ' ) ( � ( ))
'

S t ti i
t

t

= −
=
∏ 1

0

θ . (5)

Equally important, an individual customer’s hazard func-
tion can be modified to reflect company retention actions,
which, in turn, produce a notion of lifetime increase and
LTV gain. The methodology for doing so is of great tacti-
cal interest to the manager in charge of customer retention.

FROM REVENUE TO LIFETIME
VALUE TO LIFETIME GAIN

With the construction of hazard functions, and conse-
quently estimates of an individual customer’s survival
functions and remaining lifetimes, we can now describe
how to evaluate customers in terms of their potential reac-
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tion to company retention initiatives. It is well recognized
in company operations that customers should be differen-
tially valued. Limited resources must be targeted toward
those customers who are central to the strategy of the busi-
ness’s development, and away from those of marginal (or
even negative) worth. As we said earlier, some companies
focus on “big” customers, where “big” is measured by the
periodic (e.g., monthly) revenues they generate. In con-
trast, one could weight monthly revenues by the probabil-
ity that the customer will survive (i.e., not churn) at future
points in time, and this results in a measure of lifetime rev-
enue. If company costs are subtracted at these future times,
the resulting measure is often called LTV. This notion is at-
tractive to company managers with a financial back-
ground, in that it answers the question, “What is a
reasonable value for this customer as a current company
asset?” It has been a popular guide to customer acquisition
in the direct marketing activities of fund-raising and mail
order. Note however, that LTV is intrinsic to an individual
and does not account for any ongoing relationship a com-
pany has with its customers. In particular, a company’s ac-
tions will often have an effect on his or her remaining
tenure and future revenue generation. Strauss and Friege
(1999) call this future profit Second Lifetime Value
(SLTV). Although the activities of relationship marketing
can be quite varied, we suggest a measure of GLTV below
to quantify the potential financial effects of company re-
tention efforts and thus to incorporate the company’s ac-
tions on LTV. In sum, we distinguish three levels of
customer valuation: (a) his or her single period contribu-
tion to a company’s revenues, (b) his or her associated
profit (revenue-cost) calculated during the entire lifetime
of the relationship, and (c) the increase in that lifetime
profit based on a company’s efforts. Each level extends the
previous level. Only the third, GLTV, incorporates com-
pany actions and thus has significance for retention opera-
tions and strategy.

Other authors have considered potential increases in
customer lifetimes and their effect on managerial strategy.
Using a rich set of customer covariates, including survey-
based satisfaction measures, customer contacts, as well as
usage and cost data, Bolton (1998) constructs a propor-
tional hazards model for cellular telephone customer life-
times. By examining the effects of changes in some of the
covariates (e.g., customer satisfaction), she succeeds in es-
timating the effect on customer lifetimes of such strategies
as increased regaining of new customers. Our aims here
are arithmetically similar but managerially more tactical,
focusing on the potential effect on lifetimes of contract re-
newal and rate plan changes for an individual. It becomes
very important, then, to ensure that hazard functions are as
disaggregated as possible, and the presumption of propor-
tional hazards is relaxed of necessity through use of the

ANN model. (Indeed, we demonstrate below that our cus-
tomers can be segmented into several sets within which
proportional hazards roughly holds, but whose baseline
hazards differ markedly across segments.) Also, our need
to construct a hazard function for each of the company’s
customers forces our use of a less rich covariate set from
company databases than for Bolton’s (1998) or Bolton and
Lemon’s (1999) situation, as survey data are only avail-
able for a limited set of customers.

Our situation and analysis proceed on the empirically
based presumption that individual revenues and costs are
essentially constant during the customer’s lifetime. In
many service industries, customer profitability will de-
pend on his or her position in the service life cycle, and this
can be built into the analysis below, although for simplicity
we do not do so.

The neural network model produces individual-level
hazard functions that are not bound by the proportional
hazards assumption. From these estimated hazard func-
tions {�θ i (t), t = 1, 2, 3, . . .} calculate the estimated survival
function { �Si (t), t = 1, 2, 3, . . .}, as indicated by (5), with the
estimated remaining lifetime at time t0 given by (4).

Suppose for simplicity the monthly revenue generated
by customer i is effectively constant for all t, with a value
of Ri, then an estimate of the total expected revenue from
customer i is

ERi
0 = ti

*Ri. (6)

This quantity can be used to calculate an expected gain
from a successful retention effort, and this, in turn, can be
used to rank customers for targeting for special treatment.

Suppose customers are subject to a critical time period
in their tenure when a decision is made concerning the
company’s efforts to continue the individual’s patronage.
This time, t0, may be marked by the expiration of a contract
or special promotion. Shortly before this critical time, say
at time t0 – ∆, an attempt is made to restore the customer’s
potential future behavior to what was estimated at the be-
ginning of his or her service period. That is, if this reten-
tion effort is successful, the customer’s new hazard
function is translated by the interval t0. The illustrative
graph in Figure 2 is based on a contract expiration date of
t0 = 12 months. When ∆ = 2 months (i.e., the retention ef-
fort is made 2 months before contract expiration), the
customer’s old and new hazard functions are shown in
Figure 2.

Figure 2 illustrates only one way in which a customer’s
current hazard function might inform his or her transformed
hazard function after a successful retention effort. Another
plausible approach is to base a retention offer to a particular
on some configuration of covariates (such as various usage
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or other service charges) and apply the estimated hazard
function model—a function of covariates—to the new val-
ues. This will also result in a new hazard function.

For the ith customer, call this new hazard function {θi

+

(t), t = 1, 2, 3, . . .}. This generates the corresponding sur-
vival function {Si

+ (t), t = 1, 2, 3, . . .}. Using (4), one can
calculate the median remaining lifetime at time t0 for the
new hazard function:

t t
S t

S t
i

i i

i

+
+ +

+
− =0

0

0 5such that
( )

( )
. . (7)

(This, incidentally, is not necessarily the same as the time
period by which the hazard function is translated.)

Then estimate the expected revenue ERi

+ via

ERi
+ = ti

+ Ri, (8)

and GLTV for customer i from a successful retention effort is

GLTVi = ERi
+ – ERi

0. (9)

In this discussion we have made some assumptions to
simplify the notation. Straightforward modifications may
be made to this formulation in case revenues or costs per
customer also change through the retention effort or in
case monthly revenue is known not to be constant (e.g., to
have seasonal variations).

This establishes the framework in which a customer can
be evaluated and his or her potential contribution to future
profit can be calculated. In the next section, we provide de-
tails on an ANN model to estimate the hazard functions
that lie at the center of this valuation methodology.

AN ANN MODEL FOR
INDIVIDUAL HAZARDS

As indicated earlier, the central technical issue in an
LTV or GLTV estimation is the correct construction of
hazard functions for individual customers. Classical pro-
portional hazards regression is perhaps the standard tech-
nique in this regard but requires that all customer hazards
be constant multiples of a baseline hazard for all, or at least
for prespecified subsets of, customers. In many marketing
applications, it may be implausible that such proportional-
ity holds, and customer knowledge may be sufficiently
limited so that any nonproportionalities cannot be dis-
cerned from information at hand. More generally, the ana-
lyst may doubt his or her ability to correctly specify the
functions by which covariates combine to estimate the
hazard multiples required for the regression aspect of the
proportional hazards technique. Careful use of a special
ANN network model addresses both potential problems.
We will see below that this type of model dispenses with
the proportionality assumption and does not require
knowledge of the hazard multiple regression structure.
Consequently, our ANN model is likely to produce better
estimates of hazards and customer tenure than the classical
approaches.

ANNs have become generally popular in the business
world for estimating responses or scores based on a set of
underlying covariates. Through intensive computation,
they result in implicit functional relationships between
customer covariates and response variables, and thus per-
form a task similar to a regression model. From a set of
covariates xi1, xi2, . . ., xij from the ith customer, the ANN lin-
early applies a series of weights {w jk

( )1 } for each of the k
units in a “hidden layer” and set of a typically nonlinear ac-
tivation functions
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F w xk jk ij
j

J
( )1

1=
∑







 ,

where Fk is often chosen to be some sigmoid function such
as an inverse tangent or logistic function. This results in a
value at one (or more) “hidden layer(s),” and these values
are transformed by other linearly applied weights and an-
other activation function F to yield an output

F w Fk k
k

( )2∑





that is thus a highly nonlinear function of the covariates.
One of several back-propagation algorithms adjusts the
two sets of weights {w jk

( )1 } and {wk
( )2 } to satisfy some mea-

sure of agreement between the outputs and the observed
responses from a training set.

These resulting functional relationships are usually too
complicated to display and understand, so that model is
made manifest through its predicted scores for the response
variables, rather than through the regression coefficients
and error measures familiar to a statistician. In particular,
multilayer feed-forward neural networks (Haykin 1994)
are nonlinear, universal-function approximators (Hornick,
Stinchcombe, and White 1989) that have been used to esti-
mate models too complex for ordinary linear or logistic re-
gression. They are a natural technique to use as a flexible
counterpart to a proportional hazards regression. See the
above references for further basic information on neural
net models.

What information is specifically needed to develop an
ANN model of hazard functions? In the language of neural
networks, we must identify a target attribute based on
preclassified (or historical) examples. For instance, ob-
served responses to a particular marketing campaign
might be used to predict responses to similar future cam-
paigns. Being a universal-function approximator, the neu-
ral network uses the preclassifed examples—termed
training data—and learns to predict the target given a set
of (independent) input covariates, without the need to
prespecify a functional form for the predicting relation-
ship. The process of constructing a neural net model with a
single unbiased response variable is well-known. What
makes the prediction of hazard functions different from
now-standard ANN scoring applications is that (a) one si-
multaneously estimates a set of churn probabilities for
many time periods in the customers lifetime, and (2) the
target sets of churn probabilities must take into account the
censoring and truncation often found in survival analysis
problems. The way in which this is accomplished is de-
scribed next.

We model a customer’s target hazard using the follow-
ing two attributes of customer data observed in a given
time interval: (a) tenure, or age since service initiation
(TENURE), and (b) a service termination flag (CHURN)
indicating the formal ending of service during the time pe-
riod. For simplicity, consider such data observed during
one month, so that dt is the number of terminating custom-
ers in that month; nt is the number of customers at risk.
Note that the definition of customers at risk is somewhat
complicated when subjects are observed for multiple time
periods. Then, the customer is in the risk sets for each of
the ages he or she passes through during the observation
period. To model customer hazard for the period [1, T], for
every record or observation i, we create a target vector
{hi(1), . . ., hi(t), . . . hi(T)}, with the following values (for 1≤ t
≤ T):

h t

t TENURE

CHURN TENURE t T

CHURN
i

d

n
t

t

( ) &=









≤ ≤
= < ≤

0

1

1

1

= < ≤0 &

.

TENURE t T

(10)

The ratio dt / nt is the well-known Kaplan-Meier hazard
estimator mentioned above. Intuitively, we set the target
hazard to 0 when a customer is active, 1 when a customer
has canceled, and to the Kaplan-Meier hazard if censored.

The vector {hi (t)} thus can be thought of as a raw haz-
ard function for the ith individual that the neural network
will relate to the underlying covariates. This approach is
similar to Street (1998), except that we use the hazard
function, instead of the survival function, as the desired
output. This frees the neural network from having to con-
strain its outputs to be monotonic, as survival functions
must necessarily be. Then, the parameters of the neural
network are set up to learn probability distributions
(Haykin 1994).

The ANN is completed by setting some fairly standard
processes, among them being the choice of training, test-
ing, and validation subsets of the customer data; the choice
of the number and size of the ANN’s hidden layers; the
specific activation functions; and the model fit criterion.
The ANN is then run and produces a hazard function for
each individual in the data set.

Once the hazard function is estimated for each cus-
tomer, a survival function can be estimated via (5) and the
predicted median remaining tenure is given by (4). Thus,
the output of the neural network model consists of a pre-
dicted tenure for each individual customer, as well as that
customer’s estimated hazard function.

Use of an ANN model thus has the important benefit of
estimating an individual customer’s hazard function, free
of the restrictions of the classic statistical techniques.
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However, the effective inscrutability of the resulting
model indicates some caution in the use of its predicted
hazard functions. Just as with neural nets that estimate single-
response variables, there are some warnings to be issued:

1. The form of the function that relates covariates to
hazard function components is not visible, as
with a regression model.

2. The relative importance of each of the model’s
covariates also cannot be directly seen, as with re-
gression coefficients.

3. Estimates of variances and other error measures
are not generally available.

4. Problems with the data, such as actual or near
collinearity of the covariates, or outliers, will not
often be revealed, as it might by a regression or
other classical tool.

5. Special features of the data, such as biased samples
or correlated observations, are just as severe sorts of
problems as they are for statistical analysis.

6. Results of the model fitting are not subject to intu-
itive expert judgment, as unexpected statistical pa-
rameters (e.g., incorrect coefficient signs) often
are, although residual analysis is still available.

It follows that there are business activities that are not
well supported by neural net predictions. Neural net mod-
els yield predictions but by themselves will not suggest
possible business responses. In our situation, we may pre-
dict high postcontract churn for certain customers, but
without further analysis, we cannot associate, say, an unfa-
vorable rate plan with this pattern, which would suggest a
retention tactic (e.g., offer a better rate plan). Thus, cus-
tomer targeting is a viable ANN output, but suggesting a
retention or other relationship tactic is not. ANNs are also
not known for their stability. This can be an advantage in a
changing population with unknown dynamics, where the
ANN automatically generates a wholly new model.
Modeling a slowly changing customer population at two
points in time, however, can produce radically different
ANN models, even though some factors are known to be
static. Consider the introduction of a special offer—artifi-
cially low price for 3 months, with a large increase thereaf-
ter—in some small customer segment. Its effect would
tend to dominate the refitting of an ANN, whereas a more
controllable model—for example, a proportional hazards
regression—could have the greater stability of the market
built into its form. More generally, an ANN cannot easily
incorporate subject matter knowledge, at least as com-
pared with classical linear regression.

Consequently, our neural net modeling was preceded
by a series of classical statistical models that indicated ag-
gregate results on baseline hazards and lifetime residuals.
The hazard segments produced by the ANN and the
achieved residuals appeared to be intuitive generalizations

of the preliminary statistical work and increased confi-
dence in the full ANN results. On balance then, it is a great
benefit to marketing strategy to have available the hazard
functions of individual customers, unconstrained by the
assumptions of classical proportional hazards modeling.
Other researchers have noted the need for explicit
disaggregated hazard functions, and some other tech-
niques have previously been devised for their estimation.
For example, Kooperberg, Stone, and Truong (1995) have
developed a flexible hazard estimator using linear splines
and their tensor products.

HAZARD MODELING
APPLICATION AND RESULTS

The statistical and data-mining models discussed
above can be applied to the customers whose information
resides in internal company databases, producing valuable
retention and other marketing information. The cellular
telephone division of a major American telecommunica-
tions corporation has a customer data warehouse contain-
ing billing, usage, and demographic information. This
configuration is common across many industries. The
warehouse is updated at monthly intervals with summary
information by adding a new record for every active cus-
tomer and noting customers who have canceled service.

For the purposes of the tenure modeling reported in this
article, we obtain a data extract from the warehouse where
each customer record includes the following:

• Billing: previous balance, charges for access, min-
utes used, toll, roaming, and optional features

• Usage: total number of calls and minutes of use for
local, toll, peak, and off-peak calls

• Subscription: number of months in service, rate
plan, contract type, date, and duration

• Churn: a flag indicating if the customer has can-
celed service

• Other: age, current and historical profitability, op-
tional features

These variables are related to those found in Bolton
(1998) and Bolton and Lemon (1999), thereby allowing
the relating of our modeled customer lifetimes to customer
retention decisions through such constructs as customer
satisfaction, payment equity, and the underlying utility of
the service, as these authors have demonstrated.

We use a sample of data from a single relatively small
market, comprising approximately 21,500 subscribers ac-
tive during April 1998, and model their hazard functions
from tenure t = 1 to T = 36. Thus, the churn variable in
these data would indicate those customers who canceled
service during the month of April 1998. (A customer be-
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havior expert might legitimately argue that this definition
of churn is strictly formal, based on a company decision
rather than a customer decision. Passive customers, in par-
ticular, might signal their effective service termination by
ceasing usage without formally notifying the provider,
thus causing our observed lifetimes to be somewhat longer
than behavioral lifetimes. Although this effect surely oc-
curs, a separate analysis of our data showed no discernible
drop-off in usage in the months preceding the formal churn
date.) Only a small percentage of customers churned in
that single period, so the vast majority of the observations
are censored. Note that a straightforward examination of
months in service (tenure) would yield means biased in
two ways. First, the data are right censored, in that most
customer’s final lifetimes are not known as they have not
yet churned. Second, the data are left truncated, in that the
only customers observed are those whose lifetimes coin-
cide with the observation period: short lifetimes in the
population tend to be underrepresented in the sample.
However, by basing our models on churn proportions
among x-month-old customers (x = 1, 2, 3, . . .), both
sources of these well-known biases are avoided. Both
these remedies are now standard (see Allison 1995).

The classical proportional hazards model for the dis-
crete death times we have here can be operationalized by
its parameterization as a complementary-log-log (CLL)
model—see Allison (1995) for more information includ-
ing an explanation of what the CLL form is generally ap-
propriate for the proportional hazards formulation. A
comparison of one specific neural net and this proportional
hazards model, both relying on the same set of potential
covariates, is presented in Figure 3, which shows the graph

of lifetime predictions versus observed lifetimes from the
two models.

Figure 3 shows predicted median tenure at birth (as cal-
culated by [4] for t0 = 0) for the neural network and for the
CLL model plotted against observed tenure for the 161
customers in the holdout data set who have already can-
celed. It is clear from the graphs that the neural network is
more sensitive for predicting tenure than the CLL model.
The CLL tenure predictions are clustered around 20
months and rarely exceed 30 months, resulting in a gross
underestimate of tenure for long-lived customers. The
neural network predictions, on the other hand, are more
highly correlated with observed tenure, even for the higher
tenure values.

The ANN’s superiority for these data is also shown by
the residual plot in the appendix. Although we do not dis-
play the evidence here, similar results have been seen for
several different cellular markets at several different points
in time. It turns out that a major source of the ANN’s supe-
riority for these data is its ability to discern distinct clusters
of hazard functions, each with a unique baseline hazard.

Both the CLL and neural network estimators, however,
give biased tenure estimates. An analysis of its cause and
an approximate correction are given in the appendix. Note
that the best-known causes of bias, namely, right censoring
and left truncation, have already been accounted for and
are not the source of this problem. The bias-corrected ver-
sion of the neural network estimator and the original neural
net-based predictions yield the plot presented in Figure 4,
showing predicted tenures versus observed tenures.

It is evident that the bias-corrected estimate gives a
more accurate prediction for the ranges of tenures most
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FIGURE 3
Complementary-Log-Log (CLL) and Neural Net (NN) Predictions
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frequently observed in these data (7-20 months) than the
original ANN prediction, which, in turn, is significantly
better than the proportional hazard predictions. The bias in
these estimates still shows some dependence on actual ten-
ure, but it is less pronounced than for the ANN predictions.

In sum, these data suggest that the data-mining tech-
nique of ANNs are superior to classical statistical models
for predicting customer tenure. They also have the advan-
tage of producing a separate hazard function for each cus-
tomer that is not necessarily proportionally related to other
customers’ hazard functions. However, successful tenure
estimation is not fully automatic: A Kaplan-Meier–like
hazard estimator must be borrowed from classical statis-
tics to form the target hazards, and then a special regres-
sion is necessary to remedy the bias.

CUSTOMER SEGMENTATION
BASED ON HAZARD FUNCTIONS

A very important use of individual hazard functions as
produced by an ANN is the calculation of GLTV. However,
the hazard functions are themselves interesting and yield
important marketing insights when analyzed by more tra-
ditional statistical methods. The distinguishing feature of
the ANN modeling described above is its production of
hazard functions for each customer. Just as marketing in-
sight flows from the segmentation of customers from their
vectors of attributes, it is worthwhile to cluster the T com-
ponents of these hazard functions. As shown below, seg-
menting these hazard functions gives important
operational guidance for customer targeting and retention
efforts.

The modeling was based on 21,500 subscribers, of
whom 15,000 were used to construct a hazard function
model, and the rest was used as a holdout sample whose re-
sults we focus on here. These approximately 6,500 hazard
functions produced by the neural network model are clus-
tered as follows. Each hazard function then consists of T =
36 components representing churn probabilities at cus-
tomer ages 1, 2, . . ., 36. Construct a small number of statis-
tics to indicate the shape of each hazard function for each
customer. These include the overall slope of the hazard
function from 1 to 36 months, the relative size of any
“spike” at the contract expiration time of 12 months and of
24 months, and so on. This results in a small number of sta-
tistics for the hazard function of each customer, based sim-
ply on the hazard function’s shape. Then k-means
clustering (10 clusters maximum, assimilation of
small-size clusters into larger ones) is used to assign a
cluster membership to each customer.

Because each cluster contains up to several thousand
customer hazard functions, a special technique was
needed to display the hazard functions within each cluster.
First, the 36 components of each hazard function were an-
alyzed by principal components. This technique (see, e.g.,
Morrison 1967) essentially reorients the 36 dimensions of
the hazard components with new axes in the hope that
some small number of these new dimensions will capture
most of the variation of the original data. By convention,
the first principal component is labeled so it captures the
most possible variation. In our data, we arrange the hazard
functions along this first principal component and then
display the hazard functions that fall along regular inter-
vals in this new dimension. In Figure 5, the intervals are
chosen to be the 10th, 25th, 50th, 75th, and 90th percen-
tiles. This range of hazard functions shows the variety of
shapes and spread within a cluster. The cluster proportions
are shown alongside their displays.

Figure 5 suggests a fact confirmed by the principal
components analysis: Nearly all variation within a cluster
is captured by the first principal component, and therefore
the hazard functions within a cluster are all nearly multi-
ples of each other. Thus, a proportional hazards model
roughly holds within each segment. These multiples are a
way of arraying the hazards within each segment, and Fig-
ure 5 shows the segment hazards with regularly spaced
functions displayed.

These four hazard clusters constitute a useful customer
segmentation for the service operations manager. This
segmentation has important interpretations of a cus-
tomer’s state of mind in using cellular service and impor-
tant intuitive implications for the company’s retention
efforts for these different segments. These are summarized
in Table 1.
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FIGURE 4
Bias Corrected Versus Observed Tenure

NOTE: NN = neural net.
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Thus, these patterns have an important meaning for
company marketing and retention efforts. Insofar as these
patterns are discerned by a neural network model, whose
mechanisms are effectively unknowable, and because the
clusters are based on mere geometric shapes of the resul-
tant hazard curves, company needs require their relating to
internal data and customer histories. Although a classical
tool such as discriminant analysis could be used for this
task, the likely clusterwise differences in explainers and
their potential nonlinear effects indicated use of decision
tree (recursive partitioning) methods (Safavian and
Landgrebe 1991). In this method, the entire data set, with
its initial distribution of the four cluster types, is repeat-
edly split based on values of explanatory variables. In an

ideal analysis, the splitting results in subsets of data that
consist solely of one cluster or another. In our data, the ex-
planatory variables included the following:

Detailed billing A special, extracost feature; often associated with
business customers

Total charges Total charges on a customer’s monthly bill;
includes access charge, air time, roaming charges,
and so on

Peak MOU Number of monthly minutes of use (MOU) billed
at defined peak hours

Channel Sales channel (e.g., GTE distributor, auto dealer)
through which the service was initially purchased

Total calls Total number of calls in a month
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FIGURE 5
Hazard Clusters

TABLE 1
Marketing Implications for Hazard Clusters

Cluster Segment Contract-Related Exit Timing Implications for Retention Effort

1 No effect of contract expiration No preexpiration contact required; contact may trigger churn
2 Small increase in churn propensity at expiration; Moderate preexpiration effort needed; new contract or continued

postexpiration churn propensity remains elevated contacts needed
3 Large spike in churn at expiration; low churn Concentrate effort on preexpiration; contract renewal may not be

thereafter required
4 Large increase in churn at expiration; postexpiration High-intensity preexpiration effort; continued competitive offers

churn high and increasing to designated customers
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Of course, many other variables are actually available
for use in this analysis; the table above only highlights
those that have an important effect on identification of the
hazard function clusters. They are comparable to the
covariates found in a study of a similar service in Bolton
and Lemon (1999). Note that our implicit goal is the rela-
tion of a customer’s retention decision, here character-
ized by hazard cluster membership, with the role these
specific covariates may play in that decision. This is a
necessary step in using the ANN-produced hazards to
suggest possible retention strategies and tactics a com-
pany might consider.

The rules that define paths to the most discriminatory
subsets are summarized in Table 2. Intuitively, it seems
that Cluster 1 is composed of customers who are insensi-
tive to contract expiration. This might include the “safety
and security” set, who possess their cellular telephone
as an emergency and convenience device, although it is
of managerial interest to note that there are many high-
revenue customers in this cluster. Cluster 3 comprises us-
ers who have a moderate flat-rate access charge that ac-
commodates all their calling needs. Cluster 4, in contrast,
comprises customers with rate plans whose flat rates do
not fit their high calling volumes. These may well be cus-
tomers who would be better served by a different rate plan;
their high postcontract churn probabilities indicate that
such improved plans often may be obtained through alter-
native suppliers. It may be that Cluster 2, which is a
scaled-down version of Cluster 4, may also include cus-
tomers with inappropriate contracts.

In these data, it is likely that the expiration of 12-month
contracts plays a major role in determining the shape of the
hazard functions and the clusters that they fall in. (It is pos-
sible that the spikes of some customers could theoretically
be due to some other influence, such as a seasonal effect
like Christmas or an informal 12-month “tickler” reminder
set by the customer himself, but the choice of
month—April—for this analysis gives no support to this
notion. Contract expiration is known from exit interviews
to be a major trigger of churn.) Note, however, that mean-
ingful hazard function construction and segment interpre-
tation do not require the existence of contracts. Generally,
this sort of analysis helps to understand churn at different
stages in a customer’s life cycle. Cluster 1 above is inter-
esting for the relative constancy of low churn probabilities
across the constituent customer’s lifetimes. Cluster 4 is
characterized by consistently high churn probabilities af-
ter an initial quiet period. Both findings would be interest-
ing and operationally useful even if there were no
12-month contract to expire.

Indeed, this last observation suggests that the produc-
tion, clustering, and analysis of hazard functions are use-
ful, even when there is no single event such as contract

expiration to visually dominate the hazard form. The dis-
covery of segments with high absolute churn rates (as
Cluster 4 here) or declining hazards (as postexpiration
Cluster 3) have obvious retention and related marketing
consequences. We have suggested here that relative good-
ness of the customer’s rate plan is associated with the de-
clining hazard rate in Cluster 3. In general, then, our
methodology can yield insights even when contracts and
their expirations are not an issue.

AN EXAMPLE FOR THE USE
OF THE GLTV ESTIMATE

We have shown that the GLTV concept developed in
equations 6 through 9 has various operational uses. It
serves as a guide for the company’s interactions with indi-
vidual customers when their retention may depend on a
modified pricing plan or other concessions. It also be-
comes the basis for forming customer valuation groups to-
ward which different retention efforts and concessions
might be offered. In many large companies, it is simpler to
administer a retention program in which company actions
are directed toward segments of customers, rather than in-
dividuals. In this section, we describe how GLTV has been
used to construct relationship segments and how that seg-
mentation compares with traditional segments based on
revenue or on classic LTV.

Suppose, then, that retention efforts are varied by some
measure of customer valuation, such as revenue, LTV, or
GLTV. Segments are constructed on the basis of one of
these measures of customer value, so that the highest
100ƒ1% are subject to one (high) level of retention effort,
the next 100ƒ2% are subject to a different (and slightly
lower) effort, and so on until the lowest 100ƒs% receive yet
another (very low or nonexistent) retention effort. A sim-
ple and common case is when S = 3, so that the highest
100ƒ1% are given so-called premium treatment, the bot-
tom 100ƒ3% receive a minimal treatment, whereas the re-
mainder receives the company’s standard retention effort.
Possible generic retention strategies have been cited else-
where in the customer retention literature. See, for exam-
ple, Zeithaml, Berry, and Parasuraman (1996) or Bolton
and Lemon (1999).

The efficacy of this segmentation is calculated as fol-
lows. Suppose customers are segmented by GLTV. For a
retention effort for the ith customer in the sth segment,
there will be a certain probability that the customer will
choose to renew his contract. Call that probability ps. Note
that it is intended that p1 = 0, or some small probability. Let
GLTVs be the mean GLTV of those customers placed in the
sth segment. Then, the total expected gain from this seg-
mentation is
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N f ps s
s

S

=
=
∑

1

GLTVs, (12)

where N is the total number of customers in the population
of interest. This calculation allows the comparison of this
general retention strategy, and its basic segmentation, with
other candidate segmentation methods (e.g., revenue or
LTV). Assume all candidate segmentations construct the
same size segments {ƒs, s = 1, 2, . . ., S} so that the
segmentations differ only in the ordering of customers and
therefore in the configuration of customers who are as-
signed to a given segment. For a given candidate segmen-
tation, calculate {GLTV′s, s = 1, 2, . . ., S}, the set of mean

GLTVs for this segmentation, and further calculate the to-
tal mean expected gain from this segmentation.

N f ps s
s

S

=
=
∑

1

GLTV′s. (13)

The difference between (12) and (13) is the dollar amount
by which a candidate segmentation basis is different from
the one based on GLTV.

To illustrate the operational effect of this proposed seg-
mentation, we consider two relevant alternatives, much
like what has been done for real cellular telecommunica-
tions data. One might form segments based on average
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TABLE 2
Characterizations of Hazard Clusters

Cluster Number Shape Distinguishing Features

2 A reference shape

1 Detailed bill; few calls/month

3 Two distinct types:
• Zero charge for minutes of use (MOU), many calls/month
• No detailed bill, low total charge

4 High total charge

 at SAGE Publications on December 2, 2009 http://jsr.sagepub.comDownloaded from 

http://jsr.sagepub.com


monthly revenue, or on a measure of lifetime revenue. (Of
course, in many situations, one might also consider the
cost of service provision and extend these two bases to
form a profitability index or lifetime profit.) We choose the
simpler formulation as it better illustrates the effect of the
three notions of customer value discussed at the beginning
of this article.

We illustrate these segmentation effects with the previ-
ously mentioned sample of approximately 6,500 custom-
ers from an actual telecommunications market,
comprising roughly a quarter of a million customers (i.e.,
N ≈ 250,000). Each segmentation basis produces a particu-
lar ordering of this company’s customers. The segmenta-
tion scheme relegates the bottom 10% to an intentionally
reverse-incentive segment, 80% to a “business-as-usual”
or default segment, and selects the top 10% for member-
ship in a premium service segment. As above, let p1, p2, and
p3 be the probabilities of successful retention in each re-
spective segment. Calculate the average GLTV for each
segment for the three segmentation method discussed
above.

Table 3 shows these values (in units linearly trans-
formed from dollars to preserve company propriety) for
the three segments (top 10%, middle 80%, bottom 10%)
for each of the three segmentation methods (monthly reve-
nue, lifetime revenue, lifetime gain).

By construction, the GLTV method must have the low-
est possible values for the bottom 10% and the highest pos-
sible values for the top 10%. The key point to note is that
the LTV means are very different from those for GLTV,
largely because many in the top 10% for GLTV have short
estimated tenures, which decreases their LTV score. As we
noted near the beginning of this article, many of these
high-revenue/short-tenure customers could be well worth
retaining, but their relatively small LTV scores would con-
demn them to a lower segment through that short tenure.

From previous studies in this market, it is estimated that
p2 = .08 and p3 = .35, and it is presumed that p1 is approxi-
mately 0. The difference between (12) and (13) can then be
calculated to show the monetary effect of the GLTV seg-
mentation compared with segmentation based on revenue.
With these numbers, we calculate that the GLTV segmen-
tation results in a gain over LTV-based segmentation of
$3,602,250. This market is a relatively small one. For
larger markets, the gains are proportionately larger.

SUMMARY

We have described and contrasted common notions of
customer valuation and considered their description by
scores of several kinds. Some important marketing infor-

mation is obscured by reliance on any single score, but an
extension of LTV, called GLTV here, can incorporate the
effect of company actions on valuation and therefore guide
company concession tactics and segmentation strategies.
This concept is most effective when individual customers’
hazard functions can be estimated, and this can easily and
meaningfully be done with a special neural net model. In
this article we have argued that

1. customer valuations by revenue and LTV ignore
the potential effects of company actions, particu-
larly retention and service actions;

2. valuations based on an individual customer’s
hazard function provide meaningful customer
segments and a method of modeling the profit ef-
fects of company retention activities;

3. hazard functions can be freed from the restriction
assumptions of the classical statistical models
(e.g., proportionality) by constructing an artifi-
cial neural net;

4. hazard functions display information about a
customer’s service subscription lifestyle and
suggest a customer’s potential for a gain value
under successful subscription retention;

5. the effect of a successful customer retention ef-
fort can be quantified with these hazard func-
tions, thus quantifying lifetime gain (GLTV) in
lifetime revenue;

6. GLTV can be used to segment customers and, in
the data analyzed here, substantially improves
the profitability of company retention opera-
tions; and

7. the different retention behaviors indicated by the
ANN-based segments indicate very different
marketing strategies among those segments.

Thus, it appears that GLTV and the individual,
nonproportional hazard functions supporting it can signif-
icantly improve company operations in the areas of cus-
tomer valuation, marketing strategy, and retention
targeting.
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TABLE 3
GLTV for Three Segmentation Bases

Segmentation Method

Lifetime Gain in Lifetime
Segment Revenue Revenue Value (GLTV)

Bottom 10% 145.542 157.174 132.011
Middle 80% 375.579 435.927 373.520
Top 10% 1,739.133 1,218.467 1,744.266
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APPENDIX
Correcting for Bias

Even though the estimates of customer lifetimes shown in
Figure 3 seem reasonable, a close examination shows that the
tenure estimates are systematically larger than observed life-
times, both for the complementary log-log (CLL) and the neural
network model. Figure A1 shows residuals (i.e., observed minus
predicted tenures) for the CLL and artificial neural net (ANN)
models, plotted against observed tenures.

Not only are both sets of lifetime estimates biased, but the bias
appears to be dependent on observed lifetimes. Why do both
models overestimate tenure, even though it is known that the
CLL model asymptotically estimates the hazard rates without
bias? Let ht be the estimated hazard at time t for a given customer,
and let θt = E(ht). Recall from (10) that customers’ expected life-
time is given by

τ θ
τ

such that 0 5 1
0

. ( )= −
=
∏ t
t

or, equivalently,

τ θ
τ

such that ln ( . ) ln( )0 5 1
0

= −
−
∑ t
t

. (A1)

It follows from Jensen’s Inequality that E(ln(1 – �θ t ) ≤ ln(1 –
θt), t = 0, 1, 2, 3, . . . Furthermore, the proportional hazards struc-
ture, which holds for all customers in the CLL model, and within
clusters for the ANN model, suggests that, approximately,
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θ
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Then it is possible to approximate a form for the bias in the
ANN and CLL estimates, and hence to correct for it. Suppose t*
is the estimated tenure for a given customer, that is,
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*
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0
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=
∑ θ t
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Subtracting (A1) from (A2),
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Expanding in a Taylor Series, and observing in our data that
the hazard rates are quite constant somewhat past the median life-
time, the first term of (A3) is roughly (t*– τ)θ, where θ denotes a
mean hazard rate, whereas the second term is approximately
t*ln(δ). Thus, (A3) becomes

t t*
(

, *
(

.− = − = −τ δ)
θ

τ δ)
θ

ln
or

ln

To use this form, in the data at hand, use the training and test data
sets from the neural network to fit

pred obs

obs
d

h

− = 

 




1

across all customers who have churned, with obs being their ac-
tual observed tenure, pred being their tenure predicted by the
neural network model, and h being the mean estimated hazard for
the last few (10 months was chosen here) months of the cus-
tomer’s lifetime. Then the bias-corrected estimate of customer
tenure is given by

pred pred d
h

′ = + 

 


� 1

,

where �d is the estimate of d from the regression above.
Form residuals from both pred′′ and pred by subtracting the

observed tenure from those customers in the validation set who
have churned. The graph of these two sets of residuals, plotted
versus actual tenure, is shown in Figure A2.
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FIGURE A1
Residuals: Neural Net (NN) and

Complementary-Log-Log (CLL)

FIGURE A2
Residuals: Original Neural Net

(NN) and Bias Corrected
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The bias-corrected predictor is closer to 0 on average than is
the uncorrected neural network predictor, and its relation to ob-
served tenure is less pronounced.
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