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1 Introduction

The phrase ‘data mining’ has had a varied history within the past 30–40 years. In the
1960s, as digital computers were beginning to be applied to data analysis problems, it
was noticed that if one searched long enough (using the computer) that one could
always find some relatively complex model to fit a data set arbitrarily well. This could,
of course, happen even if the resultant model were entirely spurious and did not
represent any true underlying structure, e.g. if the data were entirely random in
nature.1 Thus, terms such as ‘data mining’ and ‘data dredging’ were coined to describe
such activities, along with related terms such as ‘data snooping’ and ‘data fishing’.2,3 In
fields such as econometrics the term ‘data mining’ still has quite a negative
connotation.4,5

Nonetheless, despite this history, by the early 1990s the term ‘data mining’ was
somewhat independently adopted by computer scientists to describe algorithmic and
database-oriented methods that search for previously unsuspected structure and
patterns in data. The data sets involved are often (but not always) massive in nature. A
precise definition of this notion of data mining is quite difficult to pin down, since as
currently practised it encompasses quite a wide variety of data analytic techniques and
methods without any necessarily single coherent theme. Nonetheless, it is fair to say
that much of this modern work in data mining can be characterized as placing a
significant emphasis on the role of algorithmic and computational issues in data
analysis, rather than on more traditional statistical issues such as inference and
estimation. Another distinction is that data mining is almost always practised in a
retrospective manner on observational data, and does not involve considerations of
experimental design and related concepts.

In this paper we will adopt this modern (computer science) usage of the term data
mining. We will largely focus on data mining as evidenced by research published in
the mainstream conferences and journals in the field, e.g. the annual ACM
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International Conference on Knowledge Discovery and Data Mining, the annual ACM
Conference on Management of Data (SIGMOD), and the Journal of Data Mining and
Knowledge Discovery. It is currently fashionable to attach the term data mining to
research papers or product descriptions that involve data analysis in any form. For
example, consider a medical research project which uses the term data mining in the
title of the study or paper to describe building classification trees (for example) on a
relatively small data set for medical diagnosis. Such papers are not of primary interest
in this review since they can equally well be viewed as the application of relatively
well-known ideas in applied statistics.

In this review paper we will instead focus on themes and strands of work which can
be viewed as relatively unique to data mining and which complement traditional
statistical methods. The paper begins in Section 2 with a brief review of general
resources in the area of data mining and continues in Section 3 with a brief history of
the field. The following three sections discuss some of the main themes in data mining
as currently practised, focusing in particular on scalable algorithms (Section 4),
finding patterns in data (Section 5), and text and web data applications (Section 6).
Section 7 contains concluding comments. As with any general review, many of the
comments contained in this paper are subjective in nature and cannot be backed up
with theorems!

2 Other reviews and resources for data mining

In terms of other general reviews of data mining, there are several which complement
the viewpoint of this paper. From a statistical perspective Hand6 and Glymour et al.7,8

discuss aspects of the general relationship between data mining and statistics. Fayyad
et al.9 provide an overview of the state of the field in 1996. In the area of automated
machine discovery, Valdes-Perez10 discusses the role of automated discovery systems
in science. A number of recent books have also appeared on data mining, largely
emphasizing business and marketing applications of data mining algorithms and
intended primarily for a nontechnical business audience.11,12 Other texts such as
those of Weiss and Indurkhya13 and Witten and Frank14 provide more of a research-
oriented viewpoint on data mining, but from a largely machine learning (computer
science) perspective. To date, there is no text available which treats data mining in a
statistical context. The online website (and associated newsletter) www.kdnuggets.com
provides many online resources covering both commercial and research activity in
data mining.

The evolution of research in data mining can be traced through a series of
workshops and conferences titled ‘knowledge discovery in databases’ (KDD). The first
few workshops15 were relatively small (approximately 50 attendees) and were
motivated by a realization among machine learning and artificial intelligence (AI)
researchers that technology was beginning to change the nature of data collection and
analysis. ‘Data owners’ such as scientists, businesses, and medical researchers, were
able to gather, store, and manage previously unimaginable quantities of data due to
technological advances and economic efficiencies in sensors, digital memory, and data
management techniques. As data volumes and archives began to grow very rapidly in
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the 1990s, so too did interest from data owners in the research conducted under the
KDD umbrella. In 1994 the first International Conference on Knowledge Discovery
and Data Mining was held.16 It has evolved into the primary annual forum for data
mining research.17–21 Edited research papers from the early KDD workshops were
published in two edited volumes, Piatetsky-Shapiro and Frawley22 and Fayyad et al.,9

providing snapshots of early research in the field.

3 A brief history of data mining

It is worthwhile to begin by reviewing briefly the evolution of modern data mining.
From a statistical perspective perhaps the most noticeable feature of data mining
research is the emphasis on computational aspects of data analysis, in concert with a
relative lack of emphasis on traditional statistical concepts such as sufficient statistics,
likelihood, or model diagnostics. This ‘computational culture’ is a direct consequence
of the fact that data mining has been (to date) largely driven by computer scientists.

Within computer science, two particular subfields have contributed most heavily to
the development of data mining in the past 10 years, namely, machine learning and
databases.

3.1 Data mining and machine learning
Machine learning involves the study of how machines and humans can learn from

data and has been an important component of research in AI since the inception of AI
in the 1950s. Early work in this field was strongly linked to theories in cognitive
science, trying to build algorithms and machines which could adapt to data in a
manner thought to be similar to human learning (see Russell and Norvig,23 Chapter 1,
for a review). In more recent years (since the early 1980s) much research in machine
learning has shifted from modelling how humans learn to the more pragmatic aims of
constructing algorithms which learn and perform well on specific tasks (such as
prediction). Naturally this has led to a much greater overlap with applied statistics,
with particular emphasis on classification (discrimination) techniques, but again with
somewhat of a computational flavour. For example, machine learning research has
traditionally placed an emphasis on the human-interpretability of any model learned
from data, leading to much work on predictive models such as trees and rules which
can (for example) be readily understood by clinicians in a medical context, at least for
relatively simple trees and rule sets.

The work of Quinlan24 on decision tree classifiers, paralleling the more statistically
motivated work of Breiman et al.25 on CART, is a good example of how similar
methodologies and algorithms were pursued largely independently by researchers in
both machine learning and statistics. Within machine learning, artificial neural
networks,26,27 nearest-neighbour classifiers,28,29 simple conditional independence
models such as naive Bayes,30,31 and (more recently) support-vector machines,32 have
all been widely researched. In recent years, statisticians and machine learning
researchers have sought out common ground, such that the boundaries between
applied statistics and machine learning are more blurred than in the past.26,33–35 It is
noteworthy, however, that for largely historical reasons certain standard statistical
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techniques, such as logistic regression for example, have received little attention in the
machine learning literature. Indeed, there are many aspects of statistics which are
largely absent from the machine learning literature. Because of this lineage,
researchers in machine learning (and subsequently in data mining) typically have
formal backgrounds in computer science but may have little background in modern
statistical methods other than standard undergraduate coursework. Thus, to a
statistician, many papers on data mining may appear to be written in a foreign
language, with much discussion of algorithms and computational complexity but
relatively little in terms of mathematical characterization of the statistical aspects of
the problem. Nonetheless, despite the nature of the presentation, these papers can
contain useful ideas and methodologies for statistically-oriented researchers.

The significance of machine learning to present-day data mining lies in the fact that
many of the researchers involved in data mining, and many of the algorithms being
used in data mining, have their intellectual roots in machine learning. This partly
explains (for example) the prevalence of tree- and rule-based algorithms in data
mining papers and software tools, and the relative paucity of many of the more
traditional statistical concepts such as parameter estimation, maximum likelihood,
hypothesis testing, and so forth. Just as the interests of certain applied statisticians in
the 1990s led to significant ‘crossover’ work between computer science and machine
learning,36–38 there is a similar emergence of crossover work between statisticians and
data miners in data mining,39 although to date on a smaller scale. In the commercial
sector, vendors of statistical software packages have been quick to note the advantages
of including the phrase ‘data mining’ in their product names and promotional
literature, although it is not obvious that these packages contain much that is
conceptually different from the older ‘nondata mining’ versions.

3.2 Data mining and database research
Another strand of data mining research emerged in the 1990s within the database

research community, somewhat independently and largely in parallel with develop-
ments in machine learning. Database research got underway as a research field in the
1960s as computer scientists realized that applications which relied on transaction
processing (such as banking, airline reservations, and so forth) could not be readily
handled using simple collections of relatively independent and loosely coupled files.
The introduction of relational database concepts40 and high-level data models41

proved to be major conceptual breakthroughs in the field, providing general and
principled frameworks for data modelling and access. Topics such as updating the
database in a systematic manner, answering structured queries about the data,
controlling access and security in the context of multiple users, and so forth, became
the foundations of modern database management. By the late 1980s and early 1990s,
relational database technology had successfully established itself in the commercial
sector, i.e. many businesses and organizations were now using these relational models
and tools to manage their data. Worth noting is the fact that these relational database
systems were never explicitly designed to support data analysis tasks. Instead they are
primarily designed for the purposes of storage, query, and transaction management,
i.e. supporting day-to-day operations of organizations that handle large volumes of
data (e.g. airlines, banks, hospitals, retail organizations, etc.).
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In transactional business environments (such as banks, etc.) interest in data
warehousing began to grow in the early 1990s,42 namely maintaining a historical
repository of all transactions which had ever been recorded. Database researchers
quickly realized that now not only did their customers want to store, manage, and
access their data in a systematic fashion, but now they also wished to be able to analyse
it. This analysis could not take place in the traditional statistical fashion since these
data sets were typically far too large to be handled by conventional statistical software
packages. Thus was born the concept of data analysis algorithms which are designed to
operate directly on relational databases, forming the main component of modern
database-oriented research in data mining.

The paper by Agrawal et al.,43 on association rule mining is probably the earliest
example of such work, demonstrating how simple association rules can be ‘mined’
from a relational database in an efficient manner. An example of an association rule is
‘if an individual purchases bread and milk then they are likely to also purchase butter
with probability 0.8’. This early work on association rules spurred significant interest
in the database research community, and data mining attained an increasingly
significant presence at database research conferences such as SIGMOD by the late
1990s. This strand of work is largely characterized by an emphasis on very efficient
data structures and algorithms for operating on data which is not resident in main
memory (typically on a disk, perhaps stored in a relational database), and searching
for sets of simple local patterns such as association rules. More recently there has been
more infusion of statistical ideas in the database research community, involving, for
example, development of computationally efficient algorithms for algorithms such as
classification trees and mixture modelling. For example, Gehrke et al.44 reported
substantial computational and memory efficiencies in their implementation of
decision tree classifiers using special-purpose data structures, and applied their
algorithm to data sets involving millions of points. In a similar fashion, Bradley et al.45

described a heuristic algorithm for an implementation of the expectation–maximiza-
tion (EM) algorithm applied to Gaussian mixture modelling on massive data sets,
which seeks to minimize the number of passes through the data set.

Just as the influence of machine learning research on data mining has led to
somewhat of a bias towards classification problems, the database influence has led to
an emphasis on the data access aspects of analysing massive data sets. Overall this has
been a positive contribution in the sense it has led to an increased awareness among
data analysts that the traditional approach of viewing the data as existing in a single
‘flat file’ often does not scale very well to massive data sets. For example, data on a
group of medical patients may well be distributed across different tables, located on
physically different storage devices. The beauty of database technology is that the user
is isolated from the details of where such data are stored. The user simply issues
queries (in a formal representation language such as the structured query language
(SQL)) and the database management system then takes care of the details of finding
and returning the relevant data in as efficient a manner as possible.

In the context of data mining research one of the larger issues to be faced is whether
this general ‘standard interface’ approach can support sophisticated statistical
modelling. At present the answer is no, in the sense that a conventional database
query language such as SQL provides a relatively awkward and potentially inefficient
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interface for performing the underlying mathematical operations inherent to
statistical modelling (e.g. matrix operations for linear regression). Thus, it is
somewhat of an open question as to whether it is better to develop special-purpose
‘SQL-like’ languages for data mining or instead to focus on algorithmic ideas (such as
sampling) which minimize interaction with the database and perform traditional
statistical analyses using traditional tools and environments on reduced data sets
which can fit in main memory. While there are various trade-offs involved it is again
worth noting that the existing database interfaces (such as SQL) were not originally
designed for supporting statistical model building.

In next three sections we discuss specific strands of research in data mining which
may be of interest to researchers involved in medical data analysis, and which involve
concepts and techniques which are largely outside the mainstream statistical literature
(at least at present).

4 Scalable algorithms for massive data sets

4.1 General challenges imposed by massive data sets
As mentioned earlier, one of the main challenges in dealing with massive data sets is
the scaling effects which often occur as data sets grow in size. For simplicity, assume
we have an N � p data matrix with p measurements (variables, columns) characteriz-
ing each of N objects (individuals, rows). When we talk about massive data sets we
often implicitly assume we are talking about very large values of N (e.g. data on
several hundred thousand patients) but it is important to note that many of these
massive data sets also may contain large numbers of measurements (p) as well, e.g. up
to several hundred variables for patients in a medical study. The time complexity of a
data analysis algorithm is typically expressed in a worst-case sense as a function of N
and p and any other parameters which may enter into the algorithm or the modelling,
e.g. OðNpÞ for an algorithm which is linear in both N and p. Algorithms whose time
complexity scales poorly as a function of N (e.g. as N2 or N3) are often completely
impractical for large data sets, e.g. hierarchical clustering algorithms typically scale as
OðN2Þ in both time and memory. Sensitivity to p is slightly better since p is typically
not as large as N: Oðp2Þ is often fine for many problems, but Oðp3Þ or higher will begin
to be problematic for p of the order 103 or greater. Thus, data mining researchers
interested in massive data set applications often focus on algorithms which scale in the
‘near-linear’ range in N and usually no worse than p2 in p (see Huber46 for further
discussion).

The other relevant aspect of data analysis for large data sets concerns the physical
storage location of the data relative to the central processing unit (CPU). In simple
terms, we can think of two primary types of storage media (memory) in a computer
system – in reality there can be other distinctions such as cache memory, tape-memory
etc, but here we just focus on this simplified viewpoint. Primary memory consists of
random-access memory (RAM) and has the benefit of allowing relatively fast random
access of any bytes stored in RAM, on the order of 10ÿ7–10ÿ8 seconds with current
technology. Specifically, this is how long it takes the system to bring the data from
memory to the CPU, after which a computation can be performed. Secondary memory
consists (for our purposes) of disk storage. The access time here (how long it takes to
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access a random location on the disk) is on the order of 10ÿ2 s. There are many other
issues involved here, and storage technology is constantly changing, but nonetheless
this relative difference in access time between primary and secondary memory is fairly
fundamental and is predicted to remain on the order of 104–105.47 An analogy would
be that if the data in primary memory are thought of as being on the bookshelf in your
office within 1 m of your hand, the data in secondary memory are effectively 100 km
away!

Thus, in determining the time complexity above, we can think of the physical
location of the data (whether primary or secondary memory) as affecting the overall
complexity by a multiplicative constant proportional to the average access time, e.g. if
the algorithm requires one computation per data point, and each data point is accessed
randomly, then the time taken by the algorithm will be proportional to cN, where N is
the number of data points and c is the time taken to access the data point (to bring it to
the processor). This is somewhat of a simplification, but illustrates the main point that
algorithms which frequently access the disk will be much slower than algorithms
which operate on data entirely in main memory. If we can organize the data so that it
can be sequentially scanned from the disk then the cost of disk access decreases, since
sequential scanning of a disk can be carried out much more efficiently than random
access of the same amount of data. But many widely used data analysis algorithms
either repeatedly access different subsets of the data in an unpredictable manner (such
as classification trees) or require multiple passes through the entire data set (e.g.
applications of the EM algorithm). Even if such algorithms scale reasonably in N and
p, while they may run in reasonable time on data in main memory they will typically
be impractical for large data sets which exceed main memory capacity.

Of course what constitutes small or large depends on the context. It is quite easy to
now have 1 Gbyte (109 bytes) of RAM (primary memory) on a modern workstation
(compared to machines with only 64 kilobytes of RAM 15–20 years ago). The
secondary memory problem arises if one’s data set is too large to be read from disk into
available primary memory. For example, many retail transaction data sets and many
image data sets are in the terabyte range (1012 bytes). Clearly, such data sets are well
beyond the realm of what most statisticians are used to thinking about and the rules of
data analysis for such data sets may be different both from an organizational and
mathematical viewpoint. An important statistical issue, which we will only mention in
passing here, is the fact that as data sets become this large, homogeneity assumptions
(such as independent and identically distributed measurements) become less reliable.
There is relatively little work in data mining focusing on such statistical aspects of
massive data sets, although it seems clearly that statistical methods such as
hierarchical models may be ideally suited to deal with such heterogeneity.

4.2 Scalable versions of existing algorithms
The primary consequence of the above discussion on memory is that a naive

implementation of many data analysis algorithms will spend a large fraction of time
waiting for data to be transferred from disk when faced with massive data sets. One
approach to this problem in data mining has been to develop new versions of existing
data analysis algorithms which provably return the same results as the original
algorithm, but which involve data management strategies which minimize the overall

Data mining: data analysis on a grand scale? 315

 at SAGE Publications on December 2, 2009 http://smm.sagepub.comDownloaded from 

http://smm.sagepub.com


amount of time spent accessing data. An example of this general approach is that of
Gehrke et al.44 who propose a family of algorithms called BOAT (bootstrapped
optimistic algorithm for tree construction). The BOAT approach uses two scans
through the entire data set. In the first scan an ‘optimistic tree’ is constructed using a
small random sample from the full data (and which can fit in primary memory). The
second scan then takes care of any differences between the initial tree and the tree
which would have been built using all of the data: the resulting tree is then the same
tree that the naive algorithm would have constructed in a potentially inefficient
manner. (The details of how this is achieved in two scans is beyond the scope of this
paper, involving various clever data structures to keep track of tree-node statistics.) By
explicitly focusing on how to deal with data in secondary memory this approach allows
well-known algorithms to be scaled-up to massive data sets in a relatively efficient
manner. For example, Gehrke et al. report fitting classification trees to nine-
dimensional synthetically-generated data sets with 10 million data vectors in about
200 s. In a similar vein, the work of Moore and Lee48 on cached sufficient statistics for
multivariate categorical data takes advantage of clever data structures to efficiently
store information on a full data set in a greatly reduced form. Computational speed-
ups of 50–5000-fold on various classification algorithms (compared to naive
implementation of the algorithms) have been reported,49 where again the final model
returned by the algorithm is exactly the same as that which would have been returned
by the naive implementation.

However, there are many algorithms which are not so amenable to scaling in this
manner. Iterative algorithms such as EM may require many scans through the full
data set to converge, and full scans may be quite expensive. Thus, researchers have
turned to heuristic algorithms which are scalable to massive data sets but cannot be
guaranteed to produce the same result as the original naive algorithm. For example,
Bradley et al.45 describe a heuristic algorithm for scaling both the k-means clustering
algorithm and EM-based Gaussian mixture modelling to massive data sets which are
not resident in primary memory. In their approach, the algorithm samples the data to
find regions of high density and then gradually constructs the cluster model or
mixture model while minimizing scans over the full database.

4.3 Novel scalable algorithms
A different approach to developing scalable data mining algorithms has been to

invent new data analysis algorithms which can be easily supported by conventional
database interfaces. The best known example in this category is the aforementioned
framework of association rules for transaction data. A transaction data set typically
consists of N transactions recorded over time. Each transaction consists of a set of
individual activities or purchases which occurred during a single ‘session’, e.g. a list of
items purchased at a retail store, a list of financial transactions conducted during a
single session at an automated teller machine, or a list of prescription medicines
authorized by a doctor after examining a patient. Thus, for each of the N transactions
the data set typically contains the list of items ‘transacted,’ the names or identification
numbers of the persons involved, the time and date, and other details such as the price
of individual items and so forth.
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A simple view of such data is as a large binary N � p matrix, where there are p
individual items, and there is a 1 in entry ði; jÞ if item j was involved in transaction i,
and 0 otherwise. Thus, this matrix is typically very sparse, e.g. in retail environments
we may have p ¼ 50 000 individual products (items) that one could purchase, but a
typical transaction may only involve on the order of 10 of these products. An associa-
tion rule consists of a simple statement of the following form:

IF items � are purchased, THEN item j is also purchased with confidence p ð4:1Þ

where � is a set of items (columns in the matrix), not including item j, and p is usually
interpreted as the conditional probability pð jj�Þ, i.e. the conditional probability of
item j being purchased given that items � were purchased. The joint probability pð�; jÞ
is often referred to as the support. Both the support and confidence of a rule are
estimated empirically from the data.

The basic idea behind association rule algorithms is to find all association rules in
the data which have support above some threshold tS and confidence above some
threshold tC, e.g. tS ¼ 0:1 and tC ¼ 0:8. Sets of items which have joint probability
greater than the support threshold are known as frequent itemsets. To find all itemsets of
size k one can take advantage of the fact that for an itemset of size k to be frequent, all
its subsets of size kÿ 1 must also be frequent (a simple consequence of joint
probability). Thus, given a list of frequent itemsets of size kÿ 1, one can generate a
candidate list of itemsets of size k by checking that all subsets of itemsets of size k are
themselves frequent. This process of generating candidate itemsets is carried out based
on the itemsets alone, and does not involve scanning the data. Once the candidate
itemsets of size k have been found, the database is scanned to find the actual empirical
support for each of the candidate itemsets. Since counting is a relatively simple and
standard operation for databases, this can be carried out in a computationally efficient
manner (e.g. linear in N and p). The algorithms typically search the rule-space in a
systematic manner, starting at itemsets of size k ¼ 1 and incrementally increasing k,
where moving from k to kþ 1 involves both the generation of candidate itemsets and
the scanning of the database to find those that are frequent. Typically for sparse data
(and a support threshold value tS that is not ‘too large’) the number of frequent
itemsets will be zero above a relatively small k value, e.g. k � 10. After all frequent
itemsets are found, the algorithm makes one final pass through the database to
determine which of the frequent itemsets correspond to association rules with
confidence above tC. Agrawal et al.43 report results on synthetic data involving 1000
items and up to 10 million transactions. They empirically demonstrate on these data
sets that the computation time scales up linearly as a function of the number of
transactions. Similar results have since been reported on a wide range of sparse
transaction data sets and many variations of the basic algorithm have been
developed.50,51

The work on association rules differs from more traditional statistical analysis of
binary data in two significant aspects. First, the emphasis is on patterns (in the form of
rules) rather than on global models such as a log-linear model. The algorithms produce
a set of rules or patterns, which are local in the sense that they apply to specific regions
of the p-dimensional multivariate space. Because the rules are local and evaluated
individually, there is no notion of how the set of rules can be combined in a coherent
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manner for interpretation or prediction. In other words, since the rules are found
individually, there is no attempt made by the algorithm to integrate them into a
model, e.g. for the purposes of prediction. One approach here is to view the rules as
constraints on a large p-dimensional contingency table and use iterative proportional
fitting to construct joint probability models which are consistent with these
constraints.52 The resulting model can then be used for prediction. The generalization
of this idea is to extract simple summaries of the data in a computationally efficient
manner (e.g. based on counting operations) and then to build a model from the
resulting summary data.

The second nontraditional aspect of association rules from a statistical perspective is
the emphasis on computational efficiency rather than on the interpretation of the
results. It is fair to say that in published work on association rules that most of the
emphasis in evaluating different algorithms is placed on computational efficiency (e.g.
run-time as a function of N or p) with little or no emphasis on the interpretation of the
actual rules returned. This points to a potential problem with the application of such
methods in general, namely, that users with little knowledge of statistics may interpret
the association rules in an inappropriate manner, e.g. perhaps mistaking correlation
for causation. Indeed, while association rules have been one of the primary success
stories in data mining and are now available in various data mining software toolkits,
it is difficult to find any specific published reference which describes a successful
application of the method to a real problem, i.e. the question can be asked as to what
association rules are good for exactly? The answer may be that the method is primarily
a computationally efficient exploratory data analysis technique for massive transac-
tional data sets.

Novel scalable algorithms also exist for other types of data analysis. For example,
the BIRCH algorithm of Zhang et al.53 provides a scalable approach to clustering,
which is similar in spirit to k-means, but which is essentially a new clustering
algorithm in its own right.

4.4 Other approaches to scaling
There are a number of other general approaches to developing scalable algorithms

which have been proposed in data mining, e.g.

> The obvious idea of running the algorithm on a smaller random sample of the full
data set is often used in practice, especially for data analysis tasks involving iterative
and interactive phases of model-building. Note that merely generating a random
sample from a large database stored on disk may itself be a nontrivial task from a
computational viewpoint.

> Du Mouchel et al.39 propose a statistically-motivated methodology for ‘data-
squashing’ which amounts to creating a set of M weighted ‘pseudo’ data points,
where M is much smaller than the original number N, and where the pseudo data
points are automatically chosen by the algorithm to mimic as closely as possible the
statistical structure of the original larger data set. The method is empirically
demonstrated to provide one to two orders of magnitude reduction in prediction
error on a logistic regression problem compared to simple random sampling of a
data set. This is similar in spirit to ideas in Moore and Lee,48 Bradley et al.45 and
Pavlov et al.,52 namely generating a smaller approximate representation of the
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original large data set which in some sense matches the statistical characteristics of
the original data set as closely as possible. One advantage of this general approach is
that once the reduced data set is created, the original data set can in effect be
‘thrown away’ and computationally intensive visualization or model-building (e.g.
using cross-validation methods for model and parameter selection) can take place
entirely on the reduced data set in main memory.

> For nonstationary data sets which are collected over time, an online recursive
approach is often quite effective, i.e. ‘pipelining’ the data through the analysis
system as it arrives and recursively updating model parameters in an online
adaptive fashion. Cortes and Pregibon54 describe an impressive system at AT&T
which adaptively updates estimates on whether a telephone line is a business or a
residence, for about 350 million customers per night, based on about 300 million
records of daily phone calls. Logistic regression models are trained offline (on
numbers whose business/residence classification is known) and the probability of a
number being a business is modelled by a logistic regression model with input
variables based on characteristics of calls, such as time of day, length of calls, etc.

> Provost and Kolluri55 describe a variety of other techniques for scaling up to
massive data sets, including technology-driven approaches such as using parallel
computing for data analysis problems which can be parallelized.

5 Pattern discovery algorithms

Another general area of work in data mining has focused on searching for unexpected
and interpretable patterns (in a somewhat more general sense than association rules)
on data sets which are large enough that they are not amenable to visualization but are
not necessarily in the massive category as described earlier (e.g. high-dimensional
categorical data sets which fit in main memory). Typically these methods use various
measures (such as entropy-based measures) to quantify how informative a particular
rule or pattern may be relative to background knowledge,56 where background
knowledge is usually expressed in a very simple form such as prior probability
distributions on individual variables.

An early example of such work was the RX discovery project of Blum.57,58 The RX
system searched through a subset of a data set of patient records to find candidate
hypotheses such as ‘A precedes B in time, and A is correlated with B.’ The most
interesting such hypotheses were then tested on the entire data set to evaluate their
statistical significance. As with association rules, this type of unconstrained search
raises some important concerns from a statistical viewpoint. The issue of multiple-
testing is a real concern when searching through a large set of potential hypotheses in
an automated fashion since there is a nonzero probability that some nonexistent
association will appear significant just by chance. The probability of incorrectly
accepting such a spurious hypothesis rises as more and more hypotheses are tested. In
addition, in many of these systems there appears to be an implied notion of causality,
for example in the way the correlation information is presented as rules such as ‘if A
then B.’ For naive users of such systems the difference between correlation and
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causation may not be apparent and the potential for misuse and misinterpretation is
significant. Other more subtle dangers, such as the presence of hidden variables and
Simpson’s paradox, are discussed in Glymour et al.7,8

Despite the potential pitfalls of unfettered automated ‘discovery’ algorithms, the
general idea of having a computer search a large database for unexpected patterns is
certainly worthwhile as long as there is some human input into the process, and can
legitimately be viewed as a form of large-scale semi-automated exploratory data
analysis. A variety of machine learning and data mining algorithms have expanded on
this general idea with particular emphasis on learning rule-based representations.59–62

The ‘patient rule induction method’ (PRIM) of Friedman and Fisher63 provides a
general statistical framework for rule induction, with broad applicability to
multivariate data with mixed categorical and continuous-valued variables (many rule
induction algorithms can only deal with categorical variables). The algorithm can be
thought of as finding local ‘boxes’ (hyper-rectangles) in a multidimensional space
where some objective function of interest is maximized. As an example, one might
have 20 demographic variables measured on medical patients with an additional
binary class label indicating presence or absence of some medical condition. The
objective function in this case could be defined as the empirical log-odds that an
individual has the condition, given that they lie within a particular box. The algorithm
searches for ‘boxes’ by shrinking the box boundaries in specific dimensions so as to
greedily maximize or minimize the objective function within the box. Since the box
boundaries are defined to be parallel to the variable axes, they can be interpreted as
simple thresholds, and a box can be expressed in the form of a simple rule consisting
of a conjunction of threshold conditions on variables on the left-hand side (e.g. ‘IF
X � 3:2 and 0:2 � Y � 0:7 and Z � 1:8’) and a condition expressed in terms of the
mean value of the objective function within the box on the right-hand side (e.g.
‘THEN E[f] = 5.3’). The algorithm finds the first box, removes it from the multivariate
space, then searches for the best box in the remaining space, and so on in an iterative
manner, in an attempt to ‘cover’ the input space. Friedman and Fisher63 illustrate
interesting applications of the method to a multivariate geological data set and a
consumer marketing data set. Note that this particular algorithm is not intended to be
scalable in the sense described earlier, i.e. as described it is primarily intended for
application to data sets which reside in main memory.

This general theme of discovering local patterns (rather than global models) has
emerged in several different strands of work in data mining. For example, Mannila et
al.64 describe formal methods for representing sequential patterns in sequences of
events and then develop search algorithms that are similar in spirit to association rule
algorithms for efficiently finding such patterns which occur frequently in large event
sequence data sets. A typical pattern might be that the event A OR B always precedes
(within some time window) event C with probability p, where A;B and C are
individual event types. The authors report that the method was applied to finding
patterns in log-files of telecommunication alarms and the resulting patterns were
considered useful by domain experts.

Bay and Pazzani65 describe contrast sets, a framework for determining statistically
significant differences between two or more groups in a d-dimensional multivariate
categorical data sets. A contrast set consists of a conjunction of k variables and values,
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1 � k � d, which are statistically different across the groups. For example, applying
this technique to a UC census data set, and comparing individuals with PhD degrees
versus individuals with Bachelor’s degrees, the algorithm discovered several
interesting differences. Individuals in the PhD group were about three times more
likely to work over 60 h per week than the Bachelor’s group, but were twice as likely to
earn a salary greater than $50 000 per annum. An interesting aspect of this problem is
the huge search space involved, i.e. there are an exponential number of possible
contrast sets. Bay and Pazzani describe a variety of heuristic search techniques for
systematically searching the space of hypotheses (candidate contrast sets). The
multiple hypothesis testing problem is addressed by using modified Bonferroni
corrections for significance testing.

These are but a few of a large class of data mining techniques for discovering local
patterns from data sets. These patterns typically only ‘cover’ a portion of the input
space (e.g. PRIM finds local boxes within the full multidimensional space). It is not
entirely clear how to evaluate these methods in the standard statistical framework,
since there is usually no direct notion of how one can generate predictions from these
patterns. Instead, the methods appear to have more in common with exploratory data
analysis techniques, and could potentially be very useful in uncovering previously
unknown relationships and structure in data. Having said this, it is frequently the case
in practice that very large numbers of patterns are produced by these algorithms of
which only a small subset of these are actually of interest or useful. The classic
example is an algorithm which ‘discovers’ from a database of medical patient records
that all patients who are pregnant are also female. This is a valid relationship, but is
trivial in the sense that it is already well-known. There has been some work in data
mining on how patterns can be evaluated relative to a set of prior beliefs66 but it is fair
to say that this is an area where there is much room for improvement.

6 Text and multimedia mining

A significant recent focus of data-mining activity has involved the application of data
mining concepts to online collections of text documents and multimedia objects such
as images, video, audio, and so forth. Of interest here from a statistical viewpoint is the
application of statistical concepts (such as population variability) to objects which are
not necessarily best characterized by fixed-dimensional vector representations. The
World Wide Web (WWW) is of course a major focus of attention in its own right.
Phrases such as ‘text-mining’ and ‘web-mining’ are often used for these activities,
although in many cases the techniques used appear to be fairly direct extensions and
combinations of earlier ideas in the field of information retrieval67 and applied
statistics.

In the field of information retrieval the research focus has traditionally been on the
following problem: find the documents (from a large corpus) which are most relevant
to a specific query posed by a human to the system. The phrase ‘document’ is
interpreted broadly and can range from single paragraphs, to web pages, to entire
books. A widely used technique for solving this retrieval problem is to represent all
queries and documents as individual term-vectors. A term can be a single word or
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phrase, and a term-vector is a d-dimensional vector of such terms, where component i
is 1 if term i is present in the query or document and 0 otherwise (there are more
general ways to do this, but this is the essential idea). Thus, in effect, documents and
queries are reduced to points in a d-dimensional space and any of a variety of distance
functions can be used to determine the similarity of queries and documents. Of course
this simple term-vector representation loses a considerable amount of information
compared to the original document, e.g. the relative position and context of individual
terms are lost in the conversion to vector form. Nonetheless, this relatively simple
vector-space approach works reasonably (and surprisingly) well and has been widely
adopted in current information retrieval research.68

Text data mining (insofar as it can be defined at this point, see Hearst69) differs
from information retrieval in that it can be viewed as the process of automated or
semi-automated discovery of knowledge from text. As an example, unsupervised
clustering algorithms can be used on collections of documents (perhaps represented as
term-vectors) to discover which sets of documents are most closely related (at least in a
term-vector sense). More specifically, hierarchical clustering algorithms can be used to
automatically produce a taxonomy of documents. This can provide a practical
alternative to manual cataloguing of large document collections (e.g. in web appli-
cations) since a human can simply assign labels to the clusters determined by the
algorithm without having to predefine what the taxonomy should be.70 This type of
semi-supervised (or semi-automated) discovery appears to be quite a useful framework
in general for the way in which humans actually perform data mining, i.e. rather than
a fully-automated system which autonomously discovers patterns of interest, having a
semi-automated process involving the human in interpretation and evaluation of
patterns discovered by the algorithm. An early application of the idea of text mining is
the work of Swanson71 who developed a system for automatically discovering links
between previously disconnected strands of research in the medical literature. The
system uses chains of implication within the medical literature to automatically search
for hypotheses for causes of rare diseases.72,73

In the context of web-based data analysis, Chakrabarti et al.74 describe a general
class of algorithms which treat the web as a large graph, with links from one page to
another represented as directed edges in this graph. Their approach estimates
‘authority’ and ‘hub’ weights for each of a set S of candidate web pages which have
already been retrieved on the basis of being potentially relevant to a given search term
(a query). A page has a high authority weight if many good hubs point to it, and a page
has a high hub weight if it points to many good authority pages. An authority page is
intended to capture the notion of a page which is authoritative on a given subject,
while a hub page is intended to be a page which contains collections of links to
authorities. The definition of authority and hub weights specify a system of recursive
equations since authority and hub weights depend on each other. The two sets of
solution weights are in fact the principal eigenvectors of AAT and AT A, where A is the
adjacency matrix of the graph defined by S. The set of documents S are then ranked
using the resulting weights and returned to the user. In related work, Kumar et al.75

demonstrate how the concepts of hubs and authorities can be used to automatically
discover ‘cybercommunities’, i.e. groups of web page authors who share common
interests.
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The web appears particularly well-suited to exploratory data mining ventures since
it is relatively poorly understood and quite complex. For example, understanding
navigation patterns of web users is of considerable interest in E-commerce and
network traffic contexts. Cadez et al.76 describe the application of mixtures of Markov
models to modelling the sequences of page requests from users visiting a large
commercial website over a 24-h period. Each web page at the site is categorized into
one of approximately 18 categories. Thus, each user is represented by a discrete-valued
sequence of page requests, where the sequences are of different lengths for different
users. Approximately 1 million users were then clustered into 50 groups using the EM
algorithm, each group represented by a Markov model, describing 50 qualitatively
different sets of navigation patterns.

The ubiquity and availability of web-related data is likely to lead to increasing
interest from a data mining viewpoint in web-related data sets. This type of data
analysis poses a number of interesting challenges to traditional statistical methods
since the data sets tend to be heterogeneous and multimodal (e.g. text, images, etc.),
highly structured (the connectivity of web pages), nonstationary (web pages and their
usage changes continually) and massive. Much of this work has relevance to medical
research since medical data can also be viewed as highly structured, multimodal, and
nonstationary in nature, i.e. test results, time-series, diagnostic images, text
annotations, and so forth. However, to date there has been relatively little data
mining work directed at these types of data sets in medical contexts, other than
standard applications of regression and classification algorithms for predictive
modelling.

7 Conclusions

In this review we have discussed aspects of data mining which are somewhat distinct
from traditional statistical research, with a particular emphasis on

> scalable data analysis algorithms that can operate efficiently on data which reside
outside of main memory,

> algorithms which search for local patterns in data (rather than global models), and
> algorithms and techniques for non-traditional data sources such as document and

image collections and the web.

The utility of any of these techniques in a medical research context is not yet clear.
Nonetheless, as medical data sets become larger, more heterogeneous, and contain
more complex structure, at least some of these concepts from data mining may play a
useful role in medical data analysis tasks. For example, pattern-finding algorithms
such as PRIM could be quite useful for retrospective exploratory analysis of clinical
trials data, keeping in mind the potential dangers of data-dredging mentioned earlier.

We noted throughout that data mining as currently practised has its roots in
computer science, rather than in statistics. More specifically, data mining has
inherited many of the concepts and techniques underlying classification-oriented
algorithms which were prevalent in machine learning during the 1980s and 1990s. It is
also strongly influenced by research in the database area, where traditionally the
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emphasis has been on how to manage and efficiently access data rather than on how to
interpret or analyse it. These ‘cultural biases’ can be expected to become less
pronounced as more statisticians and application-specific experts become involved in
the data mining fray. However, it is nonetheless important that researchers who have
traditionally relied on statistical methods in their work, be aware of the ‘computa-
tional’ viewpoint which tends to prevail in data mining. Data mining offers several
new and interesting techniques for data analysis on a grand scale, but it also requires a
‘marriage’ with more fundamental statistical techniques in order to be successfully
used in real-world applications. As more statisticians become involved in data mining
we can expect to see more cross-fertilization of both statistical and computer science
concepts occurring in data mining research.
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