
What will this chapter tell me? 

Although none of us can know the future, predicting it is so important that organisms are hard wired 

to learn about predictable events in their environment. We saw in the previous chapter that I 

received a guitar for Christmas when I was 8. My first foray into public performance was a weekly 

talent show at a holiday camp called ‘Holimarine’ in Wales (it doesn’t exist any more because I am 

old and this was 1981). I sang a Chuck Berry song called ‘My ding-a-ling’
1
 and to my absolute 

amazement I won the competition.
2
 Suddenly other 8-year-olds across the land (well, a ballroom in 

Wales) worshipped me (I made lots of friends after the competition). I had tasted success, it tasted 

like praline chocolate, and so I wanted to enter the competition in the second week of our holiday. 

To ensure success, I needed to know why I had won in the first week. One way to do this would 

have been to collect data and to use these data to predict people’s evaluations of children’s 

performances in the contest from certain variables: the age of the performer, what type of 

performance they gave (singing, telling a joke, magic tricks), and perhaps how cute they looked. A 

regression analysis on these data would enable us to predict the future (success in next week’s 

competition) based on values of the predictor variables. If, for example, singing was an important 

factor in getting a good audience evaluation, then I could sing again the following week; however, if 

jokers tended to do better then I could switch to a comedy routine. When I was 8 I wasn’t the sad 

geek that I am today, so I didn’t know about regression analysis (nor did I wish to know); however, 

my dad thought that success was due to the winning combination of a cherub-looking 8-year-old 

singing songs that can be interpreted in a filthy way. He wrote a song for me to sing about the 

keyboard player in the Holimarine Band ‘messing about with his organ’. He said ‘take this song, 

son, and steal the show’ … and that’s what I did: I came first again. There’s no accounting for taste. 

 

                                                           

1 It appears that even then I had a passion for lowering the tone of things that should be taken seriously. 

 

2 I have a very grainy video of this performance recorded by my dad’s friend on a video camera the size of a medium-sized dog 

that had to be accompanied at all times by a ‘battery pack’ the size and weight of a tank (see Oditi’s Lantern). 

 



The simple linear model 
 

In the previous chapter we started getting down to the nitty-gritty of the linear model that we’ve been 

discussing since way back in Chapter 2. We saw that if we wanted to look at the relationship between 

two variables we could use the model in equation (2.3): 

 

In this model, b is the correlation coefficient (more often denoted as r) and it is a standardized 

measure. However, we can also work with an unstandardized version of b, but in doing so we need to 

add something to the model: 

 

 

The important thing to note is that this equation keeps the fundamental idea that an outcome for a 

person can be predicted from a model (the stuff in brackets) and some error associated with that 
prediction (i). We are still predicting an outcome variable (yi) from a predictor variable (Xi) and a 

parameter, b1, associated with the predictor variable that quantifies the relationship it has with the 

outcome variable. This model differs from that of a correlation only in that it uses an unstandardized 

measure of the relationship (b) and consequently we need to include a parameter that tells us the 

value of the outcome when the predictor is zero.
3 
This parameter is b0. 

Focus on the model itself for a minute. Does it seem familiar? Let’s imagine that instead of b0 we 

use the letter c, and instead of b1 we use the letter m. Let’s also ignore the error term for the moment. 

We could predict our outcome as follows: 

 

Or if you’re American, Canadian or Australian let’s use the letter b instead of c: 

 

Perhaps you’re French, Dutch or Brazilian, in which case let’s use a instead of m: 

 

Do any of these look familiar to you? If not, there are two explanations: (1)  you didn’t pay enough 

attention at school, or (2)  you’re Latvian, Greek, Italian, Swedish, Romanian, Finnish or Russian – to 

avoid this section being even more tedious, I used only the three main international differences in the 

equation above. The different forms of the equation make an important point: the symbols or letters 

                                                           

3 In case you’re interested, by standardizing b, as we do when we compute a correlation coefficient, we’re estimating b for 

standardized versions of the predictor and outcome variables (i.e., versions of these variables that have a mean of 0 and 

standard deviation of 1). In this situation b0 drops out of the equation because it is the value of the outcome when the predictor 

is 0, and when the predictor and outcome are standardized then when the predictor is 0, the outcome (and hence b0) will be 0 

also. 

 



we use in an equation don’t necessarily change it.
4 
Whether we write mx + c or b1X + b0 doesn’t really 

matter, what matters is what the symbols represent. So, what do the symbols represent? 

Hopefully, some of you recognized this model as ‘the equation of a straight line’. I have talked 

throughout this book about fitting ‘linear models’, and linear simply means ‘straight line’. So, it should 

come as no surprise that the equation we use is the one that describes a straight line. Any straight 

line can be defined by two things: (1)  the slope (or gradient) of the line (usually denoted by b1); and 

(2)  the point at which the line crosses the vertical axis of the graph (known as the intercept of the line, 

b0). These parameters b1 and b0 are known as the regression coefficients and will crop up time and 

time again in this book, where you may see them referred to generally as b (without any subscript) or 
bn (meaning the b associated with variable n). A particular line (i.e., model) will have a specific 

intercept and gradient.  

Figure 8.2 shows a set of lines that have the same intercept but different gradients. For these 

three models, b0 will be the same in each but the values of b1 will differ in each model.  

Figure 8.2 also shows models that have the same gradients (b1 is the same in each model) but 

different intercepts (the b0 is different in each model). I’ve mentioned already that b1 quantifies the 

relationship between the predictor variable and the outcome, and Figure 8.2 illustrates this point. In 

Chapter 6 we saw how relationships can be either positive or negative (and I don’t mean whether or not 

you and your partner argue all the time). A model with a positive b1 describes a positive relationship, 

whereas a line with a negative b1 describes a negative relationship. Looking at Figure 8.2 (left), the 

red line describes a positive relationship whereas the green line describes a negative relationship. As 

such, we can use a linear model (i.e., a straight line) to summarize the relationship between two 

variables: the gradient (b1) tells us what the model looks like (its shape) and the intercept (b0) tells us 

where the model is (its location in geometric space). 

This is all quite abstract, so let’s look at an example. Imagine that I was interested in predicting 

physical and downloaded album sales (outcome) from the amount of money spent advertising that 

album (predictor). We could summarize this relationship using a linear model by replacing the names 

of our variables into equation (8.1): 

 

 

Once we have estimated the values of the bs we would be able to make a prediction about album 

sales by replacing ‘advertising’ with a number representing how much we wanted to spend advertising 

an album. For example, imagine that b0 turned out to be 50 and b1 turned out to be 100. Our model 

would be: 

 

Note that I have replaced the betas with their numeric values. Now, we can make a prediction. Imagine 

we wanted to spend £5 on advertising, we can replace the variable ‘advertising budget’ with this value 

and solve the equation to discover how many album sales we will get: 

 

 

                                                           

4 For example, you’ll sometimes see equation (8.1) written as Yi =  (b0 + b1Xi) + ei. The only difference is that this equation has 

bs in it instead of bs. Both versions are the same thing, they just use different letters to represent the coefficients. 

 



So, based on our model we can predict that if we spend £5 on advertising, we’ll sell 550 albums. I’ve 

left the error term in there to remind you that this prediction will probably not be perfectly accurate. 

This value of 550 album sales is known as a predicted value. 

 

 


