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Chapter 19: Logistic regression 

Self-test answers 

 

SELF-TEST  Rerun this analysis using a stepwise method (Forward: LR) 

entry method of analysis.  

The main analysis 

To open the main Logistic Regression dialog box select 

. 

 

Figure 1: Logistic Regression main dialog box 

In this example, the outcome was whether or not the patient was cured, so we can 

simply drag Cured from the variable list to the Dependent box (or select it and click on 

). There is also a box for specifying the covariates (the predictor variables). It is 

possible to specify the main effect of a predictor variable (remember, this is the effect on 

an outcome variable of a variable on its own). You can also specify an interaction effect, 

which is the combined effect (on an outcome variable) of two or more variables. To 

specify a main effect, select one predictor (e.g., Duration) and then drag it to the 

Covariates box (or click on ). To input an interaction, click on more than one variable 

on the left-hand side of the dialog box (i.e., click on several variables while holding down 

the Ctrl key, or Cmd on a Mac) and then click on  to move them to the Covariates box. 

In this example there are only two predictors and therefore there is only one possible 

interaction (the Duration  Intervention interaction), but if you have three predictors 

then you can select interactions using two predictors, and an interaction involving all 
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three. In Figure 1, I have selected the two main effects of Duration, Intervention and 

the Duration  Intervention interaction. Select these variables too. 

Method of regression 

You can select a particular method of regression by clicking on  and then 

clicking on a method in the resulting drop-down menu. You were asked to do a forward 

stepwise analysis so select the Forward: LR method of regression. 

Categorical predictors 

SPSS needs to know which, if any, predictor variables are categorical. Click on  in 

the Logistic Regression dialog box to activate the dialog box in Figure 2. Notice that the 

covariates are listed on the left-hand side, and there is a space on the right-hand side in 

which categorical covariates can be placed. Select any categorical variables you have (in 

this example we have only one, so click on Intervention) and drag them to the 

Categorical Covariates box (or click on ). 

 

Figure 2: Defining categorical variables in logistic regression 

 Let’s use standard dummy coding (indicator) for this example. In our data, I coded 

‘cured’ as 1 and ‘not cured’ (our control category) as 0; therefore, select the contrast, 

then click on  and then  so that the completed dialog box looks like Figure 2. 

Obtaining residuals 

To save residuals click on  in the main Logistic Regression dialog box. Select the 

same options as in Figure 3. 
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Figure 3: Dialog box for obtaining residuals for logistic regression 

Further options 

Finally, click on  in the main Logistic Regression dialog box to obtain the dialog 

box in Figure 4. Select the same options as in the figure. 

 

Figure 4: Dialog box for logistic regression options 

Interpretation 

Initial output 

Output 1 tells both how we coded our outcome variable (it reminds us that 0 = not cured 

and 1 = cured) and how it has coded the categorical predictors (the parameter codings 

for Intervention). We chose indicator coding and so the coding is the same as the values 

in the data editor (0 = no treatment, 1 = treatment). If deviation coding had been chosen 

then the coding would have been −1 (treatment) and 1 (no treatment). With a simple 

contrast,  if  had been selected as the reference category the codes would have 

been −0.5 (Intervention = no treatment) and 0.5 (Intervention = treatment). and if 
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had been selected as the reference category then the value of the codes would 

have been the same but with their signs reversed. The parameter codes are important 

for calculating the probability of the outcome variable (P(Y)), but we will come to that 

later.  

 

Output 1 

For this first analysis we requested a forward stepwise method1 and so the initial 

model is derived using only the constant in the regression equation. Output 2 tells us 

about the model when only the constant is included (i.e., all predictor variables are 

omitted). The table labelled Iteration History tells us that the log-likelihood of this 

baseline model is 154.08. This represents the fit of the most basic model to the data. 

When including only the constant, the computer bases the model on assigning every 

participant to a single category of the outcome variable. In this example, SPSS can decide 

either to predict that the patient was cured, or that every patient was not cured. It could 

make this decision arbitrarily, but because it is crucial to try to maximize how well the 

model predicts the observed data, SPSS will predict that every patient belongs to the 

category in which most observed cases fell. In this example there were 65 patients who 

were cured, and only 48 who were not cured. Therefore, if SPSS predicts that every 

patient was cured then this prediction will be correct 65 times out of 113 (i.e., about 

58% of the time). However, if SPSS predicted that every patient was not cured, then this 

prediction would be correct only 48 times out of 113 (42% of the time). As such, of the 

two available options it is better to predict that all patients were cured because this 

results in a greater number of correct predictions. The output shows a contingency table 

for the model in this basic state. You can see that SPSS has predicted that all patients are 

cured, which results in 0% accuracy for the patients who were not cured, and 100% 

accuracy for those observed to be cured. Overall, the model correctly classifies 57.5% of 

patients. 

                                                             

1 Actually, this is a really bad idea when you have an interaction term because to look at an interaction you 

need to include the main effects of the variables in the interaction term. I chose this method only to illustrate 

how stepwise methods work. 
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Output 2 

 

Output 3 summarizes the model (Variables in the Equation), and at this stage this 

entails quoting the value of the constant (b0), which is equal to 0.30. The table labelled 

Variables not in the Equation tells us that the residual chi-square statistic is 9.83 which is 

significant at p  .05 (it labels this statistic Overall Statistics). This statistic tells us that 

the coefficients for the variables not in the model are significantly different from zero – 

in other words, that the addition of one or more of these variables to the model will 

significantly affect its predictive power. If the probability for the residual chi-square had 

been greater than .05 it would have meant that forcing all of the variables excluded from 

the model into the model would not have made a significant contribution to its 

predictive power. 

The remainder of this table lists each of the predictors in turn, with a value of Roa’s 

efficient score statistic for each one (column labelled Score). In large samples when the 

null hypothesis is true, the score statistic is identical to the Wald statistic and the 

likelihood ratio statistic. It is used at this stage of the analysis because it is 

computationally less intensive than the Wald statistic and so can still be calculated in 

situations when the Wald statistic would prove prohibitive. Like any test statistic, Roa’s 

score statistic has a specific distribution from which statistical significance can be 

obtained. In this example, Intervention and the Intervention × Duration interaction 

both have significant score statistics at p < .01 and could potentially make a contribution 

to the model, but Duration alone does not look likely to be a good predictor because its 

score statistic is non-significant, p > .05. As mentioned earlier, the stepwise calculations 

are relative and so the variable that will be selected for inclusion is the one with the 

highest value for the score statistic that has a significance below .05. In this example, 

that variable will be Intervention because its score statistic (9.77) is the biggest. 
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Output 3 

Step 1: Intervention 

As I predicted in the previous section, whether or not an intervention was given to the 

patient (Intervention) is added to the model in the first step. As such, a patient is now 

classified as being cured or not based on whether they had an intervention or not 

(waiting list). This can be explained easily if we look at the crosstabulation for the 

variables Intervention and Cured. The model will use whether a patient had an 

intervention or not to predict whether they were cured or not by applying the 

crosstabulation table shown in Table 1.  

 

Table 1: Crosstabulation of intervention with outcome status (cured or not) 

  Intervention or Not (Intervention) 

  No Treatment Intervention 

Cured? (Cured) Not Cured 32 16 

Cured 24 41 

 Total 56 57 

 

The model predicts that all of the patients who had an intervention were cured. 

There were 57 patients who had an intervention, so the model predicts that these 57 

patients were cured; it is correct for 41 of these patients, but misclassifies 16 people as 

‘cured’ who were not cured – see Table 1. In addition, this new model predicts that all of 

the 56 patients who received no treatment were not cured; for these patients the model 

is correct 32 times but misclassifies as ‘not cured’ 24 people who were. 
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Output 4 

 

Output 4 shows summary statistics about the new model (which we’ve already seen 

contains Intervention). The overall fit of the new model is assessed using the log-

likelihood statistic. In SPSS, rather than reporting the log-likelihood itself, the value is 

multiplied by −2 (and sometimes referred to as −2LL): this multiplication is done 

because −2LL has an approximately chi-square distribution and so it makes it possible 

to compare values against those that we might expect to get by chance alone. Remember 

that large values of the log-likelihood statistic indicate poorly fitting statistical models. 

At this stage of the analysis the value of −2LL should be less than the value when only 

the constant was included in the model (because lower values of −2LL indicate that the 

model is predicting the outcome variable more accurately). When only the constant was 

included, −2LL = 154.08, but now Intervention has been included this value has been 

reduced to 144.16. This reduction tells us that the model is better at predicting whether 

someone was cured than it was before Intervention was added. The question of how 

much better the model predicts the outcome variable can be assessed using the model 

chi-square statistic, which measures the difference between the model as it currently 

stands and the model when only the constant was included. We can assess the 

significance of the change in a model by taking the log-likelihood of the new model and 

subtracting the log-likelihood of the baseline model from it. The value of the model chi-

square statistic works on this principle and is, therefore, equal to −2LL with 

Intervention included minus the value of −2LL when only the constant was in the 

model (154.08 − 144.16 = 9.92). This value has a chi-square distribution and so its 

statistical significance can be calculated easily.2 In this example, the value is significant 

                                                             

2 The degrees of freedom will be the number of parameters in the new model (the number of predictors plus 

1, which in this case with one predictor, means 2) minus the number of parameters in the baseline model 

(which is 1, the constant). So, in this case, df = 2 – 1 = 1. 
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at the .05 level and so we can say that overall the model is predicting whether a patient 

is cured or not significantly better than it was with only the constant included. The 

model chi-square is an analogue of the F-test for the linear regression. In an ideal world 

we would like to see a non-significant overall −2LL (indicating that the amount of 

unexplained data is minimal) and a highly significant model chi-square statistic 

(indicating that the model including the predictors is significantly better than without 

those predictors). However, in reality it is possible for both statistics to be highly 

significant. 

There is a second statistic called the step statistic that indicates the improvement in 

the predictive power of the model since the last stage. At this stage there has been only 

one step in the analysis and so the value of the improvement statistic is the same as the 

model chi-square. However, in more complex models in which there are three or four 

stages, this statistic gives a measure of the improvement of the predictive power of the 

model since the last step. Its value is equal to −2LL at the current step minus −2LL at the 

previous step. If the improvement statistic is significant then it indicates that the model 

now predicts the outcome significantly better than it did at the last step, and in a 

forward regression this can be taken as an indication of the contribution of a predictor 

to the predictive power of the model. Similarly, the block statistic provides the change in 

−2LL since the last block (for use in hierarchical or blockwise analyses). 

Output 4 also tells us the values of Cox and Snell’s and Nagelkerke’s R2, but we will 

discuss these a little later. There is also a classification table that indicates how well the 

model predicts group membership; because the model is using Intervention to predict 

the outcome variable, this classification table is the same as Table 1. The current model 

correctly classifies 32 patients who were not cured but misclassifies 16 others (it 

correctly classifies 66.7% of cases). The model also correctly classifies 41 patients who 

were cured but misclassifies 24 others (it correctly classifies 63.1% of cases). The 

overall accuracy of classification is, therefore, the weighted average of these two values 

(64.6%). So, when only the constant was included, the model correctly classified 57.5% 

of patients, but now, with the inclusion of Intervention as a predictor, this has risen to 

64.6%. 

 

 

Output 5 

 

The next part of the output (Output 5) is crucial because it tells us the estimates for 

the coefficients for the predictors included in the model. This section of the output gives 

us the coefficients and statistics for the variables that have been included in the model at 

this point (namely Intervention and the constant). The b-value is the same as the b-

value in linear regression: they are the values that we need to replace in the regression 
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equation to establish the probability that a case falls into a certain category. We saw in 

linear regression that the value of b represents the change in the outcome resulting from 

a unit change in the predictor variable. The interpretation of this coefficient in logistic 

regression is very similar in that it represents the change in the logit of the outcome 

variable associated with a one-unit change in the predictor variable. The logit of the 

outcome is simply the natural logarithm of the odds of Y occurring. 

The crucial statistic is the Wald statistic3 which has a chi-square distribution and tells 

us whether the b coefficient for that predictor is significantly different from zero. If the 

coefficient is significantly different from zero then we can assume that the predictor is 

making a significant contribution to the prediction of the outcome (Y). The Wald statistic 

should be used cautiously because when the regression coefficient (b) is large, the 

standard error tends to become inflated, resulting in the Wald statistic being 

underestimated (see Menard, 1995). However, for these data it seems to indicate that 

having the intervention (or not) is a significant predictor of whether the patient is cured 

(note that the significance of the Wald statistic is less than .05). 

You should notice that the odds ratio is what SPSS reports as Exp(B). The odds ratio 

is the change in odds; if the value is greater than 1 then it indicates that as the predictor 

increases, the odds of the outcome occurring increase. Conversely, a value less than 1 

indicates that as the predictor increases, the odds of the outcome occurring decrease. In 

this example, we can say that the odds of a patient who is treated being cured are 3.41 

times higher than those of a patient who is not treated. 

In the options, we requested a confidence interval for the odds ratio and it can also 

be found in the output. As with any confidence interval it is computed such that if we 

calculated confidence intervals for the value of the odds ratio in 100 different samples, 

then these intervals would include value of the odds ratio in the population in 95 of 

those samples. Assuming the current sample is one of the 95 for which the confidence 

interval contains the true value, then we know that the population value of the odds 

ratio lies between 1.56 and 7.48. However, our sample could be one of the 5% that 

produces a confidence interval that ‘misses’ the population value. 

The important thing about this confidence interval is that it doesn’t cross 1 (both 

values are greater than 1). This is important because values greater than 1 mean that as 

the predictor variable increases, so do the odds of (in this case) being cured. Values less 

than 1 mean the opposite: as the predictor variable increases, the odds of being cured 

decrease. The fact that both limits of our confidence interval are above 1 gives us 

confidence that the direction of the relationship that we have observed is true in the 

population (i.e. it’s likely that having an intervention compared to not increases the odds 

of being cured). If the lower limit had been below 1 then it would tell us that there is a 

chance that in the population the direction of the relationship is the opposite to what we 

                                                             

3 As we have seen, this is simply b divided by its standard error (1.229/0.40 = 3.0725); however, SPSS 

actually quotes the Wald statistic squared. For these data 3.07252 = 9.44 as reported (within rounding 

error) in the table. 
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have observed. This would mean that we could not trust that our intervention increases 

the odds of being cured. 

 

 

Output 6 

 

The test statistics for Intervention if it were removed from the model are in Output 

6. Now, remember that earlier on I said how the regression would place variables into 

the equation and then test whether they then met a removal criterion. Well, the Model if 

Term Removed part of the output tells us the effects of removal. The important thing to 

note is the significance value of the log-likelihood ratio. The log-likelihood ratio for this 

model is significant (p < .01) which tells us that removing Intervention from the model 

would have a significant effect on the predictive ability of the model – in other words, it 

would be a very bad idea to remove it! 

Finally, we are told about the variables currently not in the model. First of all, the 

residual chi-square (labelled Overall Statistics in the output), which is non-significant, 

tells us that none of the remaining variables have coefficients significantly different from 

zero. Furthermore, each variable is listed with its score statistic and significance value, 

and for both variables their coefficients are not significantly different from zero (as can 

be seen from the significance values of .964 for Duration and .835 for the 

Duration×Intervention interaction). Therefore, no further variables will be added to 

the model. 

 

 

SELF-TEST  Calculate the values of Cox and Snell’s and Nagelkerke’s R2 

reported by SPSS. (Remember the sample size, N, is 113.) 

Cox and Snell’s R2 is calculated from this equation: 

   
        

                           

 
  

SPSS reports 2LL(new) as 144.16 and 2LL(baseline) as 154.08. The sample size, N, is 

113. So 
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Nagelkerke’s adjustment is calculated from: 

  
  

   
 

       
              

 
 

 

 
     

       
      

   
 

 

 
     

          
 

 
     

        
 

      

 

 

SELF-TEST  Use the case summaries function in SPSS to create a table for 

the first 15 cases in the file Eel.sav showing the values of Cured, 

Intervention, Duration, the predicted probability (PRE_1) and the 

predicted group membership (PGR_1) for each case.  

The completed dialog box should look like this: 

 

Figure 5 
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SELF-TEST  Conduct a hierarchical logistic regression analysis on these 

data. Enter Previous and PSWQ in the first block and Anxious in the 

second (forced entry).  

Running the analysis: block entry regression 

To run the analysis, we must first bring up the main Logistic Regression dialog box, by 

selecting . In this example, we know of two 

previously established predictors and so it is a good idea to enter these predictors into 

the model in a single block. Then we can add the new predictor in a second block (by 

doing this we effectively examine an old model and then add a new variable to this 

model to see whether the model is improved). This method is known as block entry and 

Figure 6 shows how it is specified. 

It is easy to do block entry regression. First you should use the mouse to select the 

variable scored from the variables list and then transfer it to the box labelled Dependent 

by clicking on . Second, you should select the two previously established predictors. 

So, select PSWQ and Previous from the variables list and transfer them to the box 

labelled Covariates by clicking on . Our first block of variables is now specified. To 

specify the second block, click on  to clear the Covariates box, which should now be 

labelled Block 2 of 2. Now select Anxious from the variables list and transfer it to the 

box labelled Covariates by clicking on . We could at this stage select some interactions 

to be included in the model, but unless there is a sound theoretical reason for believing 

that the predictors should interact there is no need. Make sure that Enter is selected as 

the method of regression (this method is the default and so should be selected already). 

Once the variables have been specified, you should select the options described in the 

chapter, but because none of the predictors are categorical there is no need to use the 

 option. When you have selected the options and residuals that you want you 

can return to the main Logistic Regression dialog box and click on . 
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Figure 6 

The output of the logistic regression will be arranged in terms of the blocks that were 

specified. In other words, SPSS will produce a regression model for the variables 

specified in block 1, and then produce a second model that contains the variables from 

both blocks 1 and 2.  

First, the output shows the results from block 0: the output tells us that 75 cases have 

been accepted, and that the dependent variable has been coded 0 and 1 (because this 

variable was coded as 0 and 1 in the data editor, these codings correspond exactly to the 

data in SPSS). We are then told about the variables that are in and out of the equation. At 

this point only the constant is included in the model, and so to be perfectly honest none 

of this information is particularly interesting!  
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Output 7 

 

 

Output 8 

 

The results from block 1 are shown next, and in this analysis we forced SPSS to enter 

Previous and PSWQ into the regression model. Therefore, this part of the output 

provides information about the model after the variables Previous and PSWQ have 

been added. The first thing to note is that 2LL is 48.66, which is a change of 54.98 

(which is the value given by the model chi-square). This value tells us about the model as 

a whole, whereas the block tells us how the model has improved since the last block. The 

change in the amount of information explained by the model is significant (p < .001), and 

so using previous experience and worry as predictors significantly improves our ability 

to predict penalty success. A bit further down, the classification table shows us that 84% 

of cases can be correctly classified using PSWQ and Previous. 

In the intervention example, Hosmer and Lemeshow’s goodness-of-fit test was 0. The 

reason is that this test can’t be calculated when there is only one predictor and that 

predictor is a categorical dichotomy! However, for this example the test can be 

calculated. The important part of this test is the test statistic itself (7.93) and the 

significance value (.3388). This statistic tests the hypothesis that the observed data are 

significantly different from the predicted values from the model. So, in effect, we want a 

non-significant value for this test (because this would indicate that the model does not 

differ significantly from the observed data). We have a non-significant value here, which 

is indicative of a model that is predicting the real-world data fairly well. 

Dependent Variable Encoding

0

1

Original Value

Missed Penalty

Scored Penalty

Internal Value

Classification Tablea,b

0 35 .0

0 40 100.0

53.3

Observ ed
Missed Penalty

Scored Penalty

Result of  Penalty

Kick

Ov erall Percentage

Step 0

Missed

Penalty

Scored

Penalty

Result of  Penalty  Kick

Percentage

Correct

Predic ted

Constant is included in the model.a.  

The cut  v alue is .500b.  

Variables in the Equation

.134 .231 .333 1 .564 1.143ConstantStep 0

B S.E. Wald df Sig. Exp(B)

Variables not in the Equation

34.109 1 .000

34.193 1 .000

41.558 2 .000

PREVIOUS

PSWQ

Variables

Ov erall Statist ics

Step

0

Score df Sig.
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The part of the output labelled Variables in the Equation then tells us the parameters 

of the model when Previous and PSWQ are used as predictors. The significance values 

of the Wald statistics for each predictor indicate that both PSWQ and Previous 

significantly predict penalty success (p < .01). The value of the odds ratio (Exp(B)) for 

Previous indicates that if the percentage of previous penalties scored goes up by one, 

then the odds of scoring a penalty also increase (because the odds ratio is greater than 

1). The confidence interval for this value ranges from 1.02 to 1.11, so we can be very 

confident that the value of the odds ratio in the population lies somewhere between 

these two values. What’s more, because both values are greater than 1 we can also be 

confident that the relationship between Previous and penalty success found in this 

sample is true of the whole population of footballers. The odds ratio for PSWQ indicates 

that if the level of worry increases by one point along the Penn State worry scale, then 

the odds of scoring a penalty decrease (because it is less than 1). The confidence interval 

for this value ranges from .68 to .93 so we can be very confident that the value of the 

odds ratio in the population lies somewhere between these two values. In addition, 

because both values are less than 1 we can be confident that the relationship between 

PSWQ and penalty success found in this sample is true of the whole population of 

footballers. If we had found that the confidence interval ranged from less than 1 to more 

than 1, then this would limit the generalizability of our findings because the odds ratio 

in the population could indicate either a positive (odds ratio > 1) or negative (odds ratio 

< 1) relationship. 

A glance at the classification plot also brings us good news because most cases are 

clustered at the ends of the plot and few cases lie in the middle of the plot. This 

reiterates what we know already: that the model is correctly classifying most cases. We 

can, at this point, also calculate R2 by dividing the model chi-square by the original value 

of –2LL. The result is: 

 2 model chi-square 54.977
.53

original 2 103.6385
R

LL
  


 

We can interpret the result as meaning that the model can account for 53% of the 

variance in penalty success (so, roughly half of what makes a penalty kick successful is 

still unknown). 
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Output 9 

Omnibus Tests of Model Coefficients

54.977 2 .000

54.977 2 .000

54.977 2 .000

Step

Block

Model

Step 1

Chi-square df Sig.

Model Summary

48.662 .520 .694

Step

1

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square

Hosmer and Lemeshow Test

7.931 7 .339

Step

1

Chi-square df Sig.

Contingency Table for Hosmer and Lemeshow Test

8 7.904 0 .096 8

8 7.779 0 .221 8

8 6.705 0 1.295 8

4 5.438 4 2.562 8

2 3.945 6 4.055 8

2 1.820 6 6.180 8

2 1.004 6 6.996 8

1 .298 7 7.702 8

0 .108 11 10.892 11

1

2

3

4

5

6

7

8

9

Step

1

Observ ed Expected

Result of  Penalty  Kick

= Missed Penalty

Observ ed Expected

Result of  Penalty  Kick

= Scored Penalty

Total

Classification Tablea

30 5 85.7

7 33 82.5

84.0

Observ ed

Missed Penalty

Scored Penalty

Result of  Penalty

Kick

Ov erall Percentage

Step 1

Missed

Penalty

Scored

Penalty

Result of  Penalty  Kick

Percentage

Correct

Predicted

The cut  v alue is .500a. 

Variables in the Equation

.065 .022 8.609 1 .003 1.067 1.022 1.114

-.230 .080 8.309 1 .004 .794 .679 .929

1.280 1.670 .588 1 .443 3.598

PREVIOUS

PSWQ

Constant

Step

1
a

B S.E. Wald df Sig. Exp(B) Lower Upper

95.0% C.I .f or EXP(B)

Variable(s) entered on step 1: PREVIOUS, PSWQ.a. 
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Output 10 

The output for block 2 shows what happens to the model when our new predictor is 

added (Anxious). So, we begin with the model that we had in block 1 and we add 

Anxious to it. The effect of adding Anxious to the model is to reduce –2LL to 47.416 (a 

reduction of 1.246 from the model in block 1 as shown in the model chi-square and block 

statistics). This improvement is non-significant, which tells us that including Anxious in 

the model has not significantly improved our ability to predict whether a penalty will be 

scored or missed. The classification table tells us that the model is now correctly 

classifying 85.33% of cases. Remember that in block 1 there were 84% correctly 

classified and so an extra 1.33% of cases are now classified (not a great deal more – in 

fact, examining the table shows us that only one extra case has now been correctly 

classified). 

The table labelled Variables in the Equation now contains all three predictors and 

something very interesting has happened: PSWQ is still a significant predictor of 

penalty success; however, Previous experience no longer significantly predicts penalty 

success. In addition, state anxiety appears not to make a significant contribution to the 

prediction of penalty success. How can it be that previous experience no longer predicts 

penalty success, and neither does anxiety, yet the ability of the model to predict penalty 

success has improved slightly? 
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Output 11 

The classification plot is similar to before and the contribution of PSWQ to predicting 

penalty success is relatively unchanged. What has changed is the contribution of 

previous experience. If we examine the values of the odds ratio for both Previous and 

Anxious it is clear that they both potentially have a positive relationship to penalty 

success (i.e., as they increase by a unit, the odds of scoring improve). However, the 

confidence intervals for these values cross 1, which indicates that the direction of this 

relationship may be unstable in the population as a whole (i.e., the value of the odds 

Omnibus Tests of Model Coefficients

1.246 1 .264

1.246 1 .264

56.223 3 .000

Step

Block

Model

Step 1

Chi-square df Sig.

Model Summary

47.416 .527 .704

Step

1

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square

Hosmer and Lemeshow Test

9.937 7 .192

Step

1

Chi-square df Sig.

Contingency Table for Hosmer and Lemeshow Test

8 7.926 0 .074 8

8 7.769 0 .231 8

9 7.649 0 1.351 9

4 5.425 4 2.575 8

1 3.210 7 4.790 8

4 1.684 4 6.316 8

1 1.049 7 6.951 8

0 .222 8 7.778 8

0 .067 10 9.933 10

1

2

3

4

5

6

7

8

9

Step

1

Observ ed Expected

Result of  Penalty  Kick

= Missed Penalty

Observ ed Expected

Result of  Penalty  Kick

= Scored Penalty

Total

Classification Tablea

30 5 85.7

6 34 85.0

85.3

Observ ed

Missed Penalty

Scored Penalty

Result of  Penalty

Kick

Ov erall Percentage

Step 1

Missed

Penalty

Scored

Penalty

Result of  Penalty  Kick

Percentage

Correct

Predicted

The cut  v alue is .500a. 

Variables in the Equation

.203 .129 2.454 1 .117 1.225 .950 1.578

-.251 .084 8.954 1 .003 .778 .660 .917

.276 .253 1.193 1 .275 1.318 .803 2.162

-11.493 11.802 .948 1 .330 .000

PREVIOUS

PSWQ

ANXIOUS

Constant

Step

1
a

B S.E. Wald df Sig. Exp(B) Lower Upper

95.0% C.I .f or EXP(B)

Variable(s) entered on step 1: ANXIOUS.a. 
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ratio in our sample may be quite different from the value if we had data from the entire 

population). 

 

Output 12 

        

You may be tempted to use this final model to say that, although worry is a significant 

predictor of penalty success, the previous finding that experience plays a role is 

incorrect. This would be a dangerous conclusion to draw, and if you read the section on 

multicollinearity in the book you’ll see why. 

 

SELF-TEST  Try creating two new variables that are the natural logs of 

Anxious and Previous. 

First of all, the completed dialog box for PSWQ is given in Figure 7 to give you some idea 

of how this variable is created (following the instructions in the chapter). 
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Figure 7 

For Anxious, create a new variable called LnAnxious by entering this name into the 

box labelled Target Variable and then click on  and give the variable a more 

descriptive name such as Ln(anxiety). In the list box labelled Function group, click on 

Arithmetic and then in the box labelled Functions and Special Variables click on Ln (this 

is the natural log transformation) and transfer it to the command area by clicking on . 

Replace the question mark with the variable Anxious by either selecting the variable in 

the list and clicking on  or just typing ‘Anxious’ where the question mark is. Click on 

 to create the variable. 

For Previous, create a new variable called LnPrevious by entering this name into 

the box labelled Target Variable and then click on  and give the variable a more 

descriptive name such as Ln(previous performance). In the list box labelled Function 

group, click on Arithmetic and then in the box labelled Functions and Special Variables 

click on Ln and transfer it to the command area by clicking on . Replace the question 

mark with the variable Previous by either selecting the variable in the list and clicking 

on  or just typing ‘Previous’ where the question mark is. Click on  to create the 

variable. 

Alternatively, you can create all three variables in one go using the syntax shown in 

Figure 8. 
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Figure 8 

 

SELF-TEST  Using what you learned in Chapter 6, carry out a Pearson 

correlation between all of the variables in this analysis. Can you work out 

why we have a problem with collinearity? 

The results of your analysis should look like this: 

 

Output 13 

From this output we can see that Anxious and Previous are highly negatively 

correlated (r = 0.99); in fact they are nearly perfectly correlated. Both Previous and 

Anxious correlate with penalty success4 but because they are correlated so highly with 

                                                             

4 If you think back to Chapter 6, these correlations with penalty success (a dichotomous variable) are point-

biserial correlations. 
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each other, it is unclear which of the two variables predicts penalty success in the 

regression. As such our multicollinearity stems from the near-perfect correlation 

between Anxious and Previous. 

 

SELF-TEST  What does the log-likelihood measure? 

The log-likelihood statistic is analogous to the residual sum of squares in multiple 

regression in the sense that it is an indicator of how much unexplained information 

there is after the model has been fitted. It follows, therefore, that large values of the log-

likelihood statistic indicate poorly fitting statistical models, because the larger the value 

of the log-likelihood, the more unexplained observations there are. 

 

SELF-TEST  Use what you learnt earlier in this chapter to check the 

assumptions of multicollinearity and linearity of the logit. 

Testing for linearity of the logit 

In this example we have three continuous variables (Funny, Sex, Good_Mate), therefore 

we have to check that each one is linearly related to the log of the outcome variable 

(Success). To test this assumption we need to run the logistic regression but include 

predictors that are the interaction between each predictor and the log of itself. For each 

variable create a new variable that is the log of the original variable. For example, for 

Funny, create a new variable called LnFunny by entering this name into the box 

labelled Target Variable and then click on  and give the variable name such as 

Ln(Funny). In the list box labelled Function group, click on Arithmetic and then in the box 

labelled Functions and Special Variables click on Ln and transfer it to the command area 

by clicking on . When the command is transferred, it appears in the command area as 

‘LN(?)’ and the question mark should be replaced with a variable name (which can be 

typed manually or transferred from the variables list). So replace the question mark 

with the variable Funny by either selecting the variable in the list and clicking on , or 

just typing ‘Funny’ where the question mark is. Click on  to create the variable. 
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Figure 9 

Repeat this process for Sex and Good_Mate. Alternatively, do all three at once using this 

syntax: 

COMPUTE LnFunny=LN(Funny). 

COMPUTE LnSex=LN(Sex). 

COMPUTE LnGood_Mate=LN(Good_Mate). 

EXECUTE. 

To test the assumption we need to redo the analysis but putting in our three 

covariates, and also the interactions of these covariates with their natural logs. So, as 

with the main example in the chapter, we need to specify a custom model: 
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Figure 10 

 

Figure 11 

Note that (1) we need to enter the log variables in the first screen so that they are listed 

in the second dialog box, and (2) in the second dialog box we have only included the 

main effects of Sex, Funny and Good_Mate and their interactions with their log values. 
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Output 14 

Output 14 is all that we need to look at because it tells us about whether any of our 

predictors significantly predict the outcome categories (generally). The assumption of 

linearity of the logit is tested by the three interaction terms, all of which are significant 

(p < .05). This means that all three predictors have violated the assumption. 

Testing for multicollinearity 

You can obtain statistics such as the tolerance and VIF by simply running a linear 

regression analysis using the same outcome and predictors as the logistic regression. It 

is essential that you click on  and then select Collinearity diagnostics in the dialog 

box. Once you have selected , switch off all of the default options, click 

on  to return you to the Linear Regression dialog box, and then click on  to run 

the analysis. 

 

Figure 12 
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Output 15 

Menard (1995) suggests that a tolerance value less than 0.1 almost certainly 

indicates a serious collinearity problem. Myers (1990) also suggests that a VIF value 

greater than 10 is cause for concern. In these data all of the VIFs are well below 10 (and 

tolerances above 0.1); see Output 15. It seems from these values that there is not an 

issue of collinearity between the predictor variables. We can investigate this issue 

further by examining the collinearity diagnostics. 

 

Output 16 

The table labelled Collinearity Diagnostics (Output 16) gives the eigenvalues of the 

scaled, uncentred cross-products matrix, the condition index and the variance 

proportions for each predictor. If the eigenvalues are fairly similar then the derived 

model is likely to be unchanged by small changes in the measured variables. The 

condition indexes are another way of expressing these eigenvalues and represent the 

square root of the ratio of the largest eigenvalue to the eigenvalue of interest (so, for the 

dimension with the largest eigenvalue, the condition index will always be 1). For these 

data the final dimension has a condition index of 15.03, which is nearly twice as large as 

the previous one. Although there are no hard-and-fast rules about how much larger a 

condition index needs to be to indicate collinearity problems, this could indicate a 

problem. 

For the variance proportions we are looking for predictors that have high 

proportions on the same small eigenvalue, because this would indicate that the 

variances of their regression coefficients are dependent. So we are interested mainly in 

the bottom few rows of the table (which represent small eigenvalues). In this example, 

40–57% of the variance in the regression coefficients of both Sex and Good_Mate is 

associated with eigenvalue number 4 and 34–39% with eigenvalue number 5 (the 

smallest eigenvalue), which indicates some dependency between these variables. So, 
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there is some dependency between Sex and Good_Mate, but given the VIF we can 

probably assume that this dependency is not problematic. 


